

Institute of High Energy Physics Chinese Academy of Sciences

素粒子実験における 放射線影響の研究について _{大阪大学理・物} 中沢遊 2018.08.23

◎ 中沢 遊(なかざわ ゆう)

・大阪大学 理・物 D3 (DC2)

- · y-nakazawa@kuno-g.phys.sci.osaka-u.ac.jp
- 素粒子実験:COMET実験
 - · 放射線耐性
 - ・ 機械学習ユーザー(超初心者)

本日の流れ(半導体・ソフトエラー)

- 素粒子実験における放射線問題
 - ・素粒子実験とは?
 - · 放射線問題
- 【具体例】COMET Phase-I
 - · COMET Phase-I
 - ・ソフトエラー対策
 - ・対策の評価試験

ほぼ初の異分野コミュニケーションなので...

- 1. 少しでも勉強して帰りたいです.
- 2. 難しい部分と簡単な部分が極端かもしれません.

素粒子実験における 放射線問題

• 何が物質を構成しているのか?

● どういう力が働いているのか?

より深く知るためには 全ての根源である **初期宇宙の状態を研究** (高エネルギー)

> 光や粒子で満ちた宇宙 (加速器の限界) 宇宙の晴れ上がり

> > (光が長距離進める)

高エネルギーへのアプローチ

エネルギー・フロンティア(直接観測)

• 質量とエネルギーの等価性: $E = mc^2$

インテンシティ・フロンティア(間接観測)

• 不確定性原理: $\Delta E \cdot \Delta t \gtrsim \hbar$ (const.)

中沢

游

インテンシティ・フロンティア(間接観測)

• 不確定性原理: $\Delta E \cdot \Delta t \gtrsim \hbar$ (const.)

1. より多くの粒子を生成 → 高強度の放射線

2. 新しい反応後の特徴ある粒子を検出

LHC @CERN

Large Hadron Collider

- ◎ エネルギー・フロンティア
 - ・ 衝突粒子:陽子 陽子
 - ・衝突エネルギー:13 TeV

(eV:電子を1 Vの電位差で加速した時の電子のエネルギー)

- ◎ 最大放射線レベル [year⁻¹]
 - ・ガンマ線:<1.6 MGy
 - ·中性子線:10^{14~15} n_{1MeVeq}/cm²
- 放射線の影響を受けるもの (ATLAS)
 - · 半導体検出器 (中心部)
 - ・約1億チャンネル
 - ・処理回路(検出器近辺:S/N,ケーブリング)
 - ASICやFPGAなどで検出器からの信号処理
 - ・(全検出器)約1億6000万チャンネル

参照: Overall view of LHC experiments URL: <u>https://cds.cern.ch/record/841555?ln=ja</u>

ATLAS検出器 44m

参照:九州大学素粒子実験研究室/ATLAS URL: <u>http://epp.phys.kyushu-u.ac.jp/index.php?ATLAS</u>

中沢

游

Belle II @KEK

SuperKEKB for Belle II

- インテンシティ・フロンティア
 - ・衝突粒子:電子 陽電子
 - ・衝突エネルギー
 - ・電子:7 GeV 陽電子:4 GeV
- 最大放射線レベル [year⁻¹]
 - ・ガンマ線:30 kGy
 - · 中性子線:10¹² n_{1MeVeq}/cm²
- 放射線の影響を受けるもの
 - · 半導体検出器 (中心部)
 - ・約800万チャンネル
 - · 処理回路(検出器近辺)
 - ・ (全検出器)約840万チャンネル Belle II 検出器 ^{参照: KEK素粒子原子核研究所: Belle II} 実験

参照:KEK素粒子原子核研究所:Belle II 実験 8m URL: https://www2.kek.jp/ipns/ja/special/belle2-nicolive/belle2-experiment/ 8m

Belle II(首都大)URL: https://www-hep.phys.se.tmu.ac.jp/research/belle2/index.html

- シングルイベント効果
 - 1個の入射粒子が引き起こす
 電離作用による高密度電荷形成
 - ・一時的損傷または、永久損傷
- トータルドーズ効果
 - ・多量の放射線による固定電荷の形成
 - ・素子の特性劣化と永久損傷
- はじき出し損傷効果
 - ・放射線による半導体結晶内原子のはじき出し
 - ・素子の特性劣化と永久損傷

本講演のトピック:素粒子実験におけるソフトエラー

ASICやFPGAなど半導体を有する集積回路

1Bit反転 (Single Event Upset: SEU) はよくある

複数Bit反転(Multi Bit Errors:MBE)は見かける

放射線への対策(ソフトエラー)

対策方法の例 · 放射線量の削減(遠距離・遮蔽)

- ・ 誤り訂正符号を用いた自動修復(後半に紹介)

 主流
- ・ 外部からのモニター&再書き込み
- - ・価格がおよそ2桁違う

CERN(人も予算も最大規模)

- ・放射線耐性のある素子の独自開発
- 耐性試験をした商用製品の利用

【具体例:ATLAS】検出器と処理回路が一体

- · ASICへの定期的なリコンフィギュレーション
- FPGAのエラーに対する修復アクション(リセット等)

マンパワー的に厳しい

Belle II

- ・耐放射線半導体検出器の独自開発
 ・検出器の性能は大切
- 耐性試験をした商用製品の利用

他の実験

- ・CERNや企業と共同開発
- ・商用品の購入

【余談】放射線の影響をうける検出器

半導体検出器 (Belle IIで利用)

- 用途:荷電粒子の飛跡再構成
- 主な放射線影響:トータルドーズ効果
 - 酸化膜内にも電子正孔対ができる
 - 酸化膜に正孔がトラップされ正に帯電

Drain

n

- 対策例:Double SOI構造
 - 酸化膜に中間シリコン層(負電位固定)を導入

Gate

р

Middle Silicon

n

Source

BOX

Si-Bulk

正に帯電した影響を打ち消す

 $V_{mid}(-)$

0

第6回ソフトエラー勉強会 (2018.08.23)

Double SOI構造

-2

前半まとめ:素粒子実験

- より初期に近い宇宙の状態を再現したい
 - · 高エネルギー化・大強度化
 - → 高エネルギー・大強度の放射線量
- 放射線による半導体への影響
 - ・シングルイベント効果
 - ・トータルドーズ効果
 - ・はじき出し損傷効果
- 放射線への対策

施設/実験	ガンマ線 [kGy/year]	中性子 [nımeveq/cm²/year]
CERN	1600	1014~15
Belle II	30	1012

- ・検出器:耐放射線検出器の開発
- · 信号処理回路
 - ・大規模実験:独自開発 or 商業製品の放射線耐性評価
 - ・中・小規模実験:商業製品の放射線耐性評価

【具体例】 COMET 5+% **COMET** Phase-I

ミューオン電子転換過程

COMET Phase-I

粒子飛跡検出器:電子の運動量測定

データ処理:FPGAベースのデータ処理回路

・ 検出器からの多チャンネルの信号を高速処理

背景事象

T磁場中

10

COMET Phase-I で使用する回路

ROESTI (150枚)

RECBE (104枚)

FCT (~10枚)

COTTRI (10枚以上)

主な4つの回路の用途

ROESTI & RECBE

検出器のアナログ信号読み出し

COTTRI

・データ取得タイミング制御

• FCT

- ·Clock分配
- ・他回路からのBusy信号処理

どの回路にも半導体を使ったチップが実装されている FPGA, Power regulator, ADC, ASD など...

放射線量のシミュレーション

4種類のシミュレーションソフトを使って評価

- ・得意とするエネルギー領域・核反応などが異なる
- → 各ソフトの結果を比較し、シミュレーションの精度と信頼性を調査中
 - シミュレーションソフト
 - FLUKA from CERN (Fortran base)
 - ・ミューオン源周辺のシミュレーション
 - ICEDUST (Geant4 base)
 - COMET実験用の汎用解析プログラム
 - · Geant4 from CERN (C++ base)
 - 実験のフルシミュレーションとデータ解析
 - MARS from FNAL (U.S.)
 - ・実験ホール全体のための遮蔽計算
 - PHITS from JAEA (Fortran base)
 - ・磁石部分と検出器部の放射線量の見積もり

高強度ビームによる高放射線環境を危惧 検出器領域において (150日間)

> ガンマ線: ~2 kGy (safety factor: 10) 中性子: ~10¹² neutron/cm² (1 MeVeq.)

検出器、読み出し回路は、高放射線耐性が求められる!

放射線量

放射線耐性試験: FPGAのソフトエラー対策

	FPGA from Xilinx Inc.	Package Size [mm]	CRAM used [Byte]	BRAM used [Byte]
RECBE	Virtex-5 (XC5VLX155T-1FFG1738C)	35 x 35	5,380,288	2,934,000
ROESTI	Artix-7 (XC7A200T-2FBG676C)	27 x 27	9,730,652	1,105,920
COTTTRI	Artix-7 (XC7A200T-2FFG1156C)	35 x 35	9,730,652	131,072
FCT	Kintex-7 (XC7K160T-2FFG676C)	27 x 27	6,692,572	18,600
(*)CRAM用の自動修復機能はFPGAの全領域をみるためCRAM usedはフルサイス				edはフルサイズ

問題:FPGAのファームウェアやデータの破損

Configuration RAM:回路構成を決定するRAM

SEU Controller for Virtex-5

- Soft Error Mitigation (SEM) Controller for 7-series
- Block RAM: 一時的にデータを保管するRAM
 - Error Correction Code (ECC)
 - · Triple Modular Redundancy (TMR) 試行錯誤中

CRAM : SEU & SEM Controller

- Error Correction Code (ECC) による検出と修正
 - ・ハミングコード(w/Hsiaoコード)によるBit反転箇所の特定
 - ・複数のBit反転 (MBE) は修正不可
- Cyclic Redundancy Check (CRC) による検出
 - ・モジュラー演算を利用した独立なBit反転検出
- (SEM) 置換(未実装)難しい...
 - ・Bit反転の発生フレームがわかれば、フレーム単位で置換
 - ・同フレーム内の任意の数のBit反転を修復可能

SEU & SEM Controllerの実装

● ソフトエラーに対する動作

- SEU & MBE: カウンターで発生回数を記録
 - ・MBE発生後は修復機能が停止
- ・修正不可能な状態や誤動作: Unrecoverable Error (URE)
 - ·MBE・Busyが継続・通信不可・レジスタ値の異常など

BRAM: ECC

BRAM用自動修復機能:ECC

- SEM Controllerのものと同様
 - ・出力はレジスタに書き込み, PCで確認
 - ・MBEによるファームウェアの書き換えはしない
- BRAM実装時のオプション
 - ・FIFOやRing Buffer
 - データ幅によって使用不可
- (最近) ECC自体のコードを書き換え
 ・ 今まで未対応のデータ幅にも使用可能にした
 ・ 他回路との通信時の誤り訂正符号として利用

中沢

游

第6回ソフトエラー勉強会 (2018.08.23)

BRAM: TMR (試行錯誤中: 結果なし)

- 独自に三重化してみた
 - ・タイミング同期が難しい
- Synplify Premier (Synopsys社)を使ってみた
 - ・ネットワークライセンスが必要(5万円/年)
 - 指定したモジュールを自動で三重化
- リソースが1つしかない部分は三重化できない
- ◎ ファームウェアの一部を三重化
 - ・TMR自体の性能評価は難しい
 - COMET Phase-I におけるTMRの価値は評価できる

24

中沢

游

中性子照射試験セットアップ

一 TANDEM加速器 @神戸大学 ビーム:3 MeV 重陽子
 標的:Be(径20 mm)
 中性子エネルギー:2 MeV(<7 MeV)
 中性子強度:4.9 MHz/cm²

(*) Be標的からの距離:10 cm ビーム電流:1uA

毎秒ソフトエラーのデータを取得

Be target

Deuteron

ROEST

(Back)

結果:CRAM

結果:BRAM

- データの信頼性が向上
- Bit反転の回数が回路によって大きく異なる
 - ・使用メモリー領域、データ保持時間の違い
- MBEはほとんど発生しなかった(小統計)
 - ・COMET Phase-I においては稀な事象だとわかった

- Front側の耐性が優位に高い
 - ・FPGAで差は見られない
 - PacakgeとPCBの物質量差が原因か
- ROESTIのURE発生頻度が比較的高い

・MBE以外の誤動作なども含まれる

・ファームウェアの違い

	CR	CRAM BRAM		AM
Back side	SEU [seu/[n/cm²]]	URE [ure/[n/cm²]]	SEU [seu/[n/cm²]/KB]	MBE [mbe/[n/cm²]/KB]
RECBE	(1.2±0.1)×10 ⁻⁷	(3.5±0.4)×10 ⁻¹⁰	(1.8±0.2)×10 ⁻¹⁰	(2.5±0.3)×10 ⁻¹²
ROESTI	(8.6±0.9)×10 ⁻⁸	(3.1±0.5)×10 ⁻¹⁰	(1.9±0.2)×10 ⁻¹¹	O(10 ⁻¹⁴)*
COTTRI	(7.4±0.7)×10 ⁻⁸	(1.4±0.2)×10 ⁻¹⁰	(1.8±0.3)×10 ⁻¹¹	(3.6±1.0)×10 ⁻¹²
FCT	(6.7±0.7)×10 ⁻⁸	(1.5±0.2)×10 ⁻¹⁰	(2.2±2.5)×10 ⁻¹¹	O(10 ⁻¹⁴)*

パーツ選定のためにCOMETでガンマ線照射した対象

- ◎ エレキパーツ
 - Positive & Negative power regulator (LMZ10503, LT1963-series, LT3070, LTM4620, LTM4644, LT8612, LT8614, L79 などなど全29種)
 - ・SFP (AFBR-57D9AMZ, AFBR-5705PZ など9種) → CERN製の耐放射線SFPの
 - ・ ADC (AD9637, LTC2264, AD9287 など)
 - · DAC (MC41050, AD5324)
 - FPGA (Virtex5:XC5VLX155T, Artix7:XC7A200T)
 - ・LVDS buffer (SN65LVDS104) などなど
- その他
 - ·光検出器(MPPC, APD, PMT:H8409-70)
 - ・シンチレーションファイバー
 - ・ 接着剤 などなど

使用を検討中(10 kGy耐性) SFP (Small Form Factor Pluggable) 光ファイバーや一般的な銅線のLANケーブル

など多数の企画で利用可能なポート

【余談】 レギュレータとSFPの例

施設:高崎量子応用研究所 **Control** area **Radiation area** 加速器・ビーム応用科学センター @九大 Cables for monitor Data Logger 放射線総合センター @東工大 Regulator LV Power Supply 量子ビーム科学研究施設 @阪大 LV Cable **線源**:⁶⁰Co (1.17 MeV, 1.33 MeV) レギュレータ:負荷抵抗を実装 **線量率**:200~4.5 Gy/h 照射結果の例:Positive regulator COMET Phase-I : ~0.04 Gy/h Dutput voltage [V] — LT8612 4.5Gy/h LT3070 4.5G/h -LT1963 目標照射量:2 kGy (電源切/入:200 Gy毎) -... LT3070 200**Gy/h** -... LT8612 22Gy/h -...LT8614 22Gy/h -LT1963-3.3 --- LT8614 400Gv/h --- LT8612 400Gy/h -LT1963-2.5 サンプル - LT1963-1.8 サンプノ ЗF 線源 500 1000 1500 2000 2500 3000 3500 Total dose [Gy] 線源 中性子照射をしたのちパーツ選定完了 2017.8.21 放射線総合センター 上記のパーツは選考通過済み 量子ビーム科学研究施設

後半まとめ: COMET Phase-I

- 現在の物理模型の枠組みを超えたミューオン電子転換過程を探索
- 大強度ビームの利用による放射線問題
 - ・複数のシミュレーションソフトでクロスチェック中
 ガンマ線:2 kGy 中性子:1.0×10¹² n_{1MeVeq}/cm²

放射線対策

- ソフトエラー:COMET Phase-I における影響
 - · Xilinx Inc. 提供のマクロなどを改良したりして利用
 - 本実験を想定するため実機ファームウェアを実装したFPGAに中性子照射
 - 個々のマクロの評価は難しい場合がある
 - · 自動修復機能によって多くのソフトエラーを修復可能
 - ・SEUの発生頻度はUREよりも2桁以上高い
 - · 7seriesとVirtex-5とでの放射線耐性を確認 (テクノロジーの違い)
- 他の放射線対策
 - ・これまでに約50種類のパーツについて耐放射線の要求を満たすか評価

Backup

ミューオン電子転換過程

Cylindrical Detector System

Cylindrical Drift Chamber

Momentum measurement

- Resolution : < 200 keV/c for 105 MeV electrons
- **Readout** : Readout Electronics for the Central drift chamber of the BElle II detector (RECBE)
 - Developed by the Belle-II CDC group
 - · Waveform and Timing information

Cylindrical Detector System

Cylindrical Trigger Hodoscope

Counter

Scintillator : High momentum particle

Cherenkov : Electron

Photo sensor : Fine-mesh PMT

Readout

Front-end Board : Single-end to Differential

Cylindrical Trigger Hodoscope

Front-end Board

StrECAL

Straw Tube Tracker

Momentum measurement

- Resolution : < 200 keV/c for 105 MeV electrons
- **Readout** : Read Out Electronics for Straw Tube Instrument (ROESTI)
 - · Developed by the COMET StrECAL group

Electron Calorimeter

Crystal : LYSO

· Particle identification (e/ μ/π)

Readout : ROESTI

Straw Tube Tracker

Electron Calorimeter

シミュレーション: FLUKA & ICEDUST

FLUKA from CERN

- ・Fortranベース汎用粒子輸送計算コード
- 放射線量の見積もり
- ・ミューオン源周辺のシミュレーション

Media Creen -

BackWa12

🔻 🛨 Magenta

100 200 300 400 500 600 700 800 900 1000

URL: http://www.fluka.org/fluka.php

ICEDUST (Geant4ベース)

- ・COMET実験用の汎用解析プログラム
- · Geant4 from CERN URL: https://geant4.web.cern.ch/
 - C++で記述された物質中における粒子の飛跡
 シミュレーションソフト
- ・ 実験のフルシミュレーション
- 本実験のデータ解析

第6回ソフトエラー勉強会 (2018.08.23)

🟉 Media

🍁 🕇 🐐 🔿 🕲 🗍

v - /

シミュレーション: MARS & PHITS

MARS from FNAL (U.S.)

・汎用粒子輸送計算コード

cm

・実験ホール全体のための遮蔽計算 URL: <u>https://mars.fnal.gov/</u>

PHITS from JAEA

- Fortranベースの汎用粒子輸送計算コード
 ・詳しくは安倍さんのスライド参照
- 放射線量の見積もり

検出器部

・ ソレノイド磁石部分

中沢

游

放射線照射施設

一 TANDEM加速器 @神戸大学 ビーム:3 MeV 重陽子
 標的:Be(径20 mm)
 中性子エネルギー:2 MeV(<7 MeV)
 中性子強度:4.9 MHz/cm²

(*) Be標的からの距離:10 cm ビーム電流:1uA

利用したガンマ線源(Co-60)の強度表

照射施設	ガンマ線強度 [Gy/h]
高崎量子応用研究所	15 @60cm (2015年1月)
加速器・ビーム応用科学センター	1400 @10cm
@九州大学	(2013年8月)
放射線総合センター	191 @40cm
@東京工業大学	(2016年6月)
量子ビーム科学研究施設	50.9 @100cm
@大阪大学	(2016年10月)

ガンマ線@東エ大:セットアップ

Schematic diagram

 $2.2V \leq VBIAS \leq 3.6V$ and VBIAS \geq (1.25 x VOUT + 1V)

セットアップ:DAQ

ガンマ線試験:セットアップ

- 施設:量子ビーム科学研究施設 @阪大 放射線総合センター @東工大
- 線源:⁶⁰Co (1.17 MeV, 1.33 MeV)
- 線量率: 400 Gy/h, 200 Gy/h, 22 Gy/h, 4.5 Gy/h COMET Phase-I: ~0.04 Gy/h
- **目標照射量**:2 kGy (安全係数:10) 電源OFF/ON:200 Gy毎

Pos	itive	Negative
Linear	Switching	Linear
LT1963	LT8612	L79
LT1963-3.3	LT8614	MC7905
LT1963-2.5	LMZ10503	NJM2828
LT1963-1.8	+3 レギュレータ	ADP7182
+8 レギュレータ		+8 レギュレータ
		全 29種類

レギュレータ:負荷抵抗を実装 SFP: "ping" で動作確認

SFP
AFBR-57D9AMZ (Avergo)
SFP made in China (very cheap)
EHB-EX-SFPGSX (ELECOM)
LAN-SFPGSX (サンワサプライ)
63GGJ (DELL)
SFPGESST (STARTECH.com)
SFP+
FINISAR
KCC-REI-NXT-NEXT-SFP 10G-SR
10G-SR (Starline)
EHB-EX-SFPGSX (ELECOM)

中性子試験

TANDEM 加速器 @神戸大学 -

ビーム:~3 MeV 重陽子 標的:Be (¢20 mm) 中性子エネルギー:2 MeV (< 7 MeV) 中性子流量:1.6 × 10⁶ neutrons/cm²/sec (標的からの距離:10 cm) (ビーム電流:1 uA)

MC7905・L79の出力は安定

- LT1963シリーズは読み出し回路の中
 性子照射時に評価済み
 - ・SFP (AFBR5D9AMZ) も同様
- LT8612・LT8614は4月に評価予定

