

COMET実験用ストローチューブトラッカー 読み出しエレクトロニクス(ROESTI) の開発状況

大阪大学大学院理学研究科 林達也

青木正治、久野良孝、仲井裕紀 KEK素核研 西口創、三原智、吉村浩司 KEK Open-It 池野正弘、内田智久、田中真伸

日本物理学会2012年春季大会@関西学院大学

- •COMET実験概要
- ・ストロー飛跡検出器
- ROESTI
- ROESTIプロトタイプ
- ・まとめ

- μ-e転換由来の105MeV/c付近の電子のみを検出
- 10⁻¹⁶より良い感度での実験を目指す

- 飛跡検出器で運動量分解能1MeV/cよりも良い精度を目指す
 - → 対策の一つとして
 ・多重散乱効果を減らす(真空中実験、低物質量検出器)

ストロー飛跡検出器の主な仕様

ストローチューブの直径	5mm
ストローチューブの厚さ	25µm
チャンネル数	4160ch
位置分解能	100 ~ 200µm
ドリフト速度 (Ar/C_2H_6)	4.8cm/µsec
想定最低電荷量	16fC

ストロー飛跡検出器に適した読み出し回路を製作する

信号処理システムへの要件

高計数率計測

パイルアップの処理

真空フィードスルーの数の

最少化(最低でも3桁台)

位置分解能を制限しない

時間分解能として2nsec

チャンネル数の多さ •4000ch以上

位置分解能 •100~200µm

- 最低電荷量 •16fC
- ガスマニホールド内 での動作

電荷増幅

熱を抑えるために 低消費電力 (240~480mW/ch)

ROESTI (Read-Out Electronics for Straw Tube Instrument)

波形のオフライン解析でパイルアップ事象を識別し
 バックグラウンドを除去する

2つの波形の重ね合わせ 8

・ノイズの評価

信号を入れていないときのベースラインの波形を取得し、ノイズに ついて評価した h14Noise _____

h14Noise Entrie 2560000 350 ノイズの定義 Mean -0.001578 RMS 300 χ^2/nd 250 ベースライン波形の一例 Sigma 200 平均值 🍂 150 100 ベースライン波形の平均値からの 50 各点での差をヒストグラムに詰める -3 -2 -1 0 1 2 2 3 ノイズ:0.72mV mV ・ヒストグラムのシグマをノイズとする

想定最低電荷16fCに対してS/N比が22

現状で数chしか評価できていない → 今後調査が必要

・ 評価のまとめ・今後の検討

今回確認できたこと

• 波形サンプリングを組み合わせたプロトタイプボードの動作

読	み出し回路の仕様要求		現状の進行状況
•	パイルアップ処理	•	波形サンプリングの定性的な確認
•	真空フィードスルーの 数の最少化	•	1枚のボードで16ch読み出し 4160->260に削減できる見込み
•	時間分解能	•	サンプリングスピード:1GSPS
• '	電荷増幅	•	S/N比は確認
•	消費電力	•	現状で700mV/ch

・ 評価のまとめ・今後の検討

- 今後の課題として
 - •消費電力
 - ・電荷増幅のゲイン
 - •時間分解能

については、実験に最適化されるように次のプロトタイプの仕様を 検討していく必要がある

- 同時に
 - ・波形の取り込みの定量的な評価
 - ・データ転送レートの確認
 - ・ノイズのさらに詳細な評価

等の評価も進めていく必要がある

- μ-e転換現象の探索により標準理論を超える物理の検証を 目指す
- COMET実験はμ-e転換現象を10⁻¹⁶の感度で探索する
- 飛跡検出器用の読み出し回路ROESTIのプロトタイプを製作し、 評価を行った
- 波形サンプリングを組み合わせたプロトタイプの動作を確認 することができた(さらに詳しい評価も必要)
- 今回の評価をもとに次のプロトタイプの仕様について検討して

End

実装チップの詳細1 •

ASDの実測値およびオシロスコープ図 (2012春季物理学会 26pFB-9 ドリフトチェンバー用ASDチップ開発と その性能 島崎昇一 より引用)

parameter	Specification
Gain (Analog output)	-1V/pC
Gain (Comparator input)	-15V/pC
Peaking time	8nsec
Max drive current	8mA
Noise	4000e(20pF)
Digital output	CMOS(3.3V)
Time walk	<700psec
Digital-Analog cross talk	<<0.5%
Power consumption	34mW/ch
Process	BiCMOS 0.8um
Chip size	4.1mm × 4.1mm
Number of ch	8

・ 実装チップの詳細2

DRS4 (Domino Ring Sampler)

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS

1.8V A/D Converter

パラメーター	仕様	パラメーター	仕様
サンプリング	700MSPS~5GSPS	クロック	10 ~ 65MHz
スピード		アナログ帯域	325MHz
帯域	950MHz	S/N比	70dB(Nyquist)
ノイズ	0.35mV (オフセット 補正後)	消費電力	114mW/ch (65MHz)
消費電力	17.5mW/ch (2GSPS)	分解能	12bit
ゲイン	0.982~0.988V/V	読み出しスピード	10 ~ 40MHz
読み出しスピード	10 ~ 40MHz	レンジ	2V p-p
レンジ	0.1 ~ 1.5V (1V p-p)	サイズ	9mm × 9mm
サイズ	9mm × 9mm		

PSI DRS4_rev09

9 Channel, 5 GSPS Switched Capacitor Array より引用

より引用

フィッティング・解析方法

- 1. 測定した波形の平均値を求める 波形テンプレートの作成
- 2. 波形テンプレートで実際の測定された波形をフィッティング
- 3. ピーク位置や面積、タイミングなどをフィッティング結果から 求めることができる

1GSPSにおけるチップ比較

	ADC12D500RF (national semiconductor)	ADC081000 (national semiconductor)	DRS4+AD9222 (PSI, Analog Devices)
分解能(bit)	12	8	12
消費電力(mW/ch)	2020	1450	130
サイズ	27mm × 27mm	20mm × 20mm	9mm × 9mm(DRS4) 9mm × 9mm(ADC)
チャンネル/チップ	1	1	8

MEG実験で実際にDRSを使用したモジュールの 消費電力:340mW → 使われていない素子の影響が大きい ↓

開発者によるとDRS4のサンプリングのみの使用に絞ると 消費電力は50mW程度まで落とせる模様