CAEN V1495を用いた Multichannel Scalerの開発

Open-It PCB-FPGA部門研究会 2011年 2月16日 京都大学

大阪大学 理学研究科 物理学専攻 M1 仲井 裕紀

CONTENTS

- COMET実験
 - パルス陽子ビーム
- Bunched Slow Extraction Test実験
- Multi Channel Scalerの開発
 - 初期モデル
 - 改良版
 - 現在のモデル
- まとめと今後

Slow Extraction from MR

- J-PARC MRからのパルス陽子ビームの時間構造を測定する。
 - 二次ビームラインのK1.1BRを使用
 - ビームのオペレーション
 - h=9(3 fill, 6 empty)
 →状況に応じて調整可能
 - 30 GeVに加速
 - Slow Bunched Extraction
 - バンチの位置とタイミング
 - MR入射KickerとRFの信号を利用
 - Read out
 - 二次ビーム(~1MHz)を数十分測定し10⁹
 Sample計測する

 3 bunch filled, no injection-no injectionempty-filled-empty-filled-empty-filled-no injection

Multichannel Scaler

使用したモジュール

- CAEN社 VME V1495 General Purpose VME Board
 - AlteraのFPGA(cyclone)を搭載する
 →自由にロジックを変えられる
 - ・405MHzの周波数で動作可能
 - 入力信号のチャンネル数が十分(96+ LEMO 26ch)
 - Linux,Windowsで動作
 - ・価格は約50万円

- Counter(11)~Counter(15)で測 定を行った
- Efficiencyが特にcounter(12)で 乱れている
- 恐らくCounterの切り替え部分が FPGA内部で遅れていると推測。 [Timing Analysisも利用]

- Counter(11)~ Counter(15)で測定を行っ た。
 - counterすべてが乱れて いる。
 - Efficiency_SUMは最大 100%のはずが、200% のEfficiencyのときもあ る。
- ➡Counterの切り替え部分以 外にも原因がある。

誤動作の原因追求

- Timing Analysisによって原因を追求した。
- 入力信号をすべてのカウンターに受け渡しているところ でDelayが生じている。
 - ➡ 一つのレジスタ当りのFan-outが多い!
 - ➡ Timing Analysisにより10Fanout / レジスタ までならDelayは生じない
 - ➡ ロジックエレメンツが不足! [FPGAがcycloneのため]
 - ➡ 結果7Fanout / レジスタに辿りつく。
 - ➡ 行き先の無いFanoutを無くすために、 counterの数も7³=343個に統一する。

デバイス	EP1C20
ロジック・エレメント数	20,060
M4K RAM ブロック(4 Kビット + パリティ)数	64
RAM ビット数	294,912
PLL数	2
最大ユーザ 1/0 ピン数	301
差動チャネル	129

MCS[最終版]に実装した動作

19

今後の課題点

- 高統計を貯めるために
 - レート耐性を上げる必要性
 - ➡ 多チャンネル化が必要 (LEMOコネクタ分は増やしたい)
 - 多チャンネル化のために、

現在使用しているLogic elementsは75%である。

➡より簡略したLogicの導入が必須 orFPGA内部の メモリ(EAB)を使用したLogicに変更?

まとめと今後

- μ-e 転換現象を探索するため研究開発を行っている。
- COMETに関するExtinctionの測定のためにMultichannel Scalerを開発した。
- レジスタのFan outを適切にしてやるのが正常動作への鍵であった。
- 高速処理の必要なところにshift registerを用いbit数の多いものの使用を避けた。
- MCSは多チャンネル化の必要性に迫られているため、より省 容量なロジックに改良が必要。
- LIDERの測定やメスバウアーの測定、などMCSは様々な用途 で応用できる。

THEEND OF SLIDES

Back up Slides 26

Have after pulse when set beam high rate.

- Mainly caused by reflection Delay cable for ADC of Hodo-scope,TOF1,and TOF2.
- Remove delay cable and terminated, so after pulse almost disappeared.
- Old modules may have after pulse.
- After pulse's origin may be Kaon ?.....

Need Up-date

for the next measurement

- In order to Measure the true extinction
 - Need new counters because the counters used can't distinguish between signal and noise.
 - Make Hodo-scope × 2
 - Need new modules in order to lose after pulse. (discriminator,coincidence_logic,and.....)
 - Need to set up CFD to distinguish between Kaon and pion and make TOF.
- Need high statics to confirm extinction data !

使用したモジュールについて

- 市販のMCS(一例) ・ Ortec社 Model 9353 100ps Time Digitizer/MCS (PCI_board)
 - Multistop TDCとMultichannel Scalerのどちらかのモードを選択 できる
 - 180ps Time resolution
 - 入力は2チャンネルのみ
 - Windowsで動作
 - ・ 価格は約240万円

今回使用したもの

- CAEN社 VME V1495 General Purpose VME Board
 - AlteraのFPGA(cyclone)を搭載する
 - ➡ 自由に設定を変えられる
 - 405MHzの周波数で動作可能
 - 入力信号のチャンネル数が十分
 - Linux.Windowsで動作
 - 価格は約50万円

選定理由

- 入力チャンネルが十分にある →counterのセグメント化 ・FPGAにより汎用性が非常に高い ・今回の測定において10nsのTime resolutionで十分 ・他に比べ価格が安価である
- ・別に用意したMultistop TDCについて
 - •Aqiris社 TC890
 - ・6チャンネル
 - ・50psのタイミング分解能
 - ・400万イベント保存可能
 - ・最高100MB/sの高速DMAモード

36

J-PARCでのExtinction測定

• これまでの測定

- MRのAbort lineから速い取り出しによる測定~2×10⁻⁵
- MLF(from RCS)での測定 ~1.13×10⁻⁷

- MRのBunched slow
 Extractionによる測定
- ビームタイムは10月下旬
 を予定!

