J-PARC muon g-2/EDM実験のための 検出器開発

計測システム研究会 2012.11.5

上野一樹(KEK)

for the J-PARC muon g-2/EDM collaboration

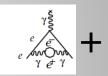
もくじ

- イントロダクション
 - ・ミューオンg-2/EDM
 - J-PARC muon g-2/EDM実験
- J-PARC muon g-2/EDMにおける検出器
- 検出器R&D
 - 各パート紹介
 - ・読み出しASIC開発
- ・まとめ

イントロダクション

磁気・電気双極子モーメント

電磁場中のスピン1/2粒子
$$\mathcal{H}=-ec{\mu}\cdotec{B}-ec{d}\cdotec{E}$$
 B:磁場、


磁気モーメント
$$ec{\mu}=g\left(rac{q}{2m}
ight)ec{s}$$
 q:電荷、m:質量、s:スピン

ディラック方程式⇒g=2⇒a=0

$$a = \frac{g-2}{2}$$

標準模型(SM)⇒g≠2⇒a≠D

電気双極子モーメント(EDM)

$$ec{d} = \eta \left(rac{q}{2mc}
ight) ec{s}$$
 もしあれば・・・

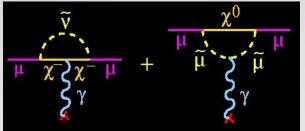
CPT定理:T対称性の破れ→CP対称性の破れ

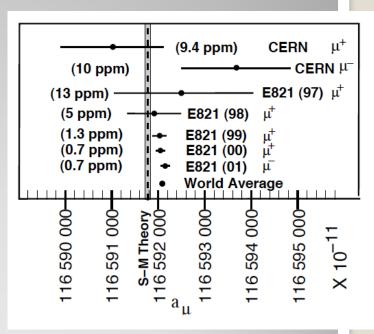
ミューオン異常磁気モーメント

ミューオンg-2:実験とSMにわずかなずれ

 $a_{\mu} = \frac{g-2}{2}$

BNL E821実験


$$\Delta a_{\mu}^{\text{Exp-SM}} = 255(63)(49) \times 10^{-11} \Longrightarrow 3.2\sigma$$


http://pdg.lbl.gov/2010/reviews/rpp2010-rev-g-2-muon-anom-mag-moment.pdf

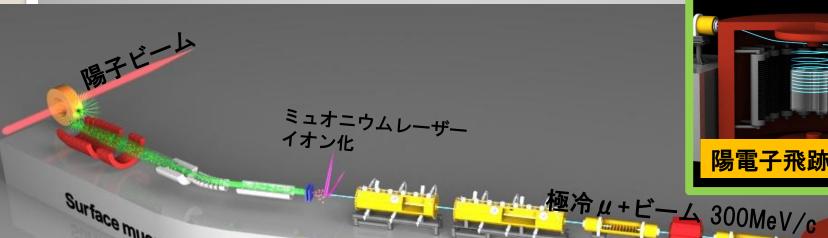
新しい物理?

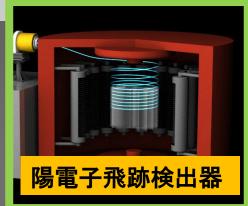
(例)超対称性粒子(SUSY)の寄与

最新の実験精度 G. W. Bennett et al. PRD (2006)

$$\frac{\Delta a_{\mu}^{\text{exp}}}{a_{\mu}} = 0.54 \text{ppm}$$

更なる精度向上 ⇒ずれの検証


J-PARC muon g-2/EDM実験


新たな実験にて検証@J-PARC

g-2:0.1ppmの精度

が目標

EDM: <1e-20 e cm

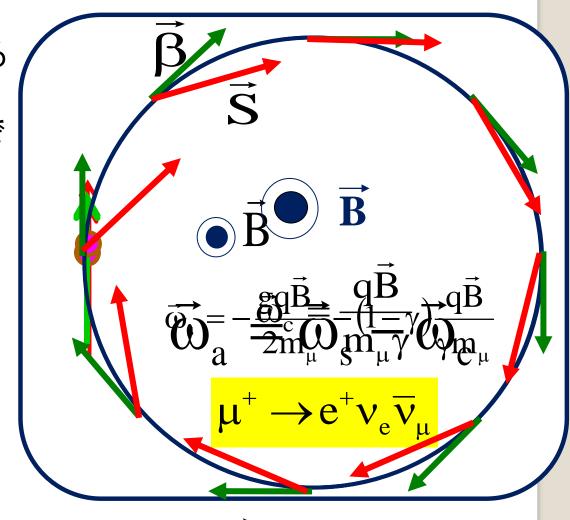
Ultra cold μ^+ source

Muon LINAC (300 MeV/c) Muon LINAC (300 MeV/c)

物質生命科学実験施設(MLF)

ミュオン基礎物理ビームライン(H-Line)

極冷 μ ⁺ ビーム:強度 10⁶/sec

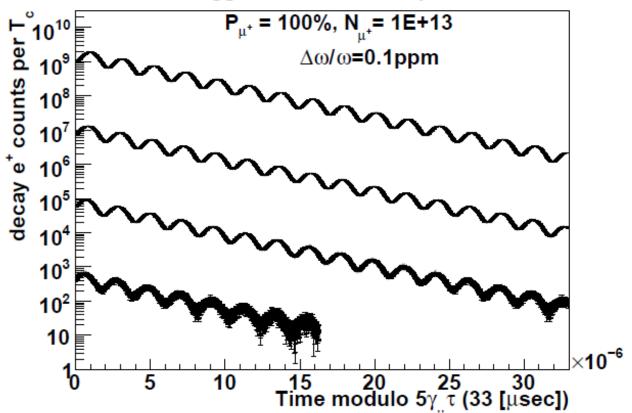

運動量 300 MeV/c($\gamma = 3$)

 $\sigma(p_T)/p < 10^{-3}$ 偏極度 >50%

ミュオン蓄積 磁石 (3T)

ミューオンg-2の測り方

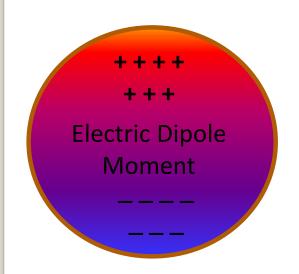
- 1. スピンにより磁場中でくる くる回転
- 2. 電荷により一様磁場中で 周回運動
- 3. 一様磁場中で歳差運動
- 4. 寿命→陽電子とニュート リノに崩壊
- 5. 陽電子はミューオンのス ピンの方向に出やすい
- 6. 陽電子数の時間変動⇒ミューオンのスピン歳差運動周波数



$$\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -\left(\frac{g-2}{2}\right)\frac{qB}{m_{\mu}} = -a_{\mu}\frac{q}{m_{\mu}}\vec{B}$$

ミューオンg-2の測り方(続き)

陽電子数の時間変動の例(シミュレーション)


Simulated Wiggle Plot for This Experiment

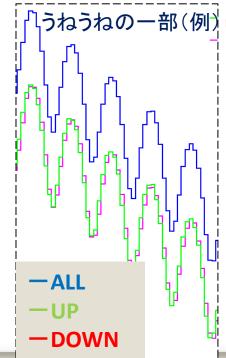
このウネウネ(Wiggle plot)の周波数と磁場がわかる ⇒aがわかる!

$$\vec{\omega}_a = -a_\mu \frac{q}{m_\mu} \vec{B}$$

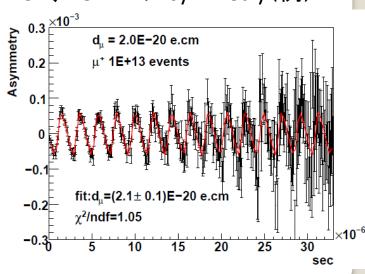
ミューオンEDMの測り方(見つけ方)

$$\vec{\omega}_{\text{EDM}} \propto \vec{\beta} \times \vec{B}$$

陽電子の放出角度の時間変動に違い



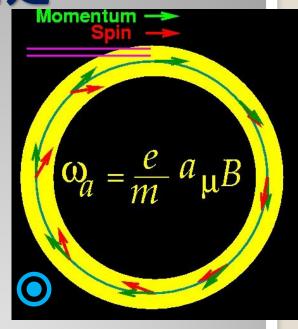
EDMがある


⇒歳差運動にEDMからの寄与

$$\vec{\omega} = \vec{\omega}_a + \vec{\omega}_{\rm EDM} = \frac{e}{m_{\mu}} a_{\mu} \vec{B} + \frac{2c}{\hbar} EDM (\vec{\beta} \times \vec{B})$$

これらを分離したい

UP、DOWNのAsymmetry(例)


この周波数を測る

ミューオンスピン歳差運動測定

実際には・・・

$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

ミューオンのfocusing⇒電場

BNL E821実験では

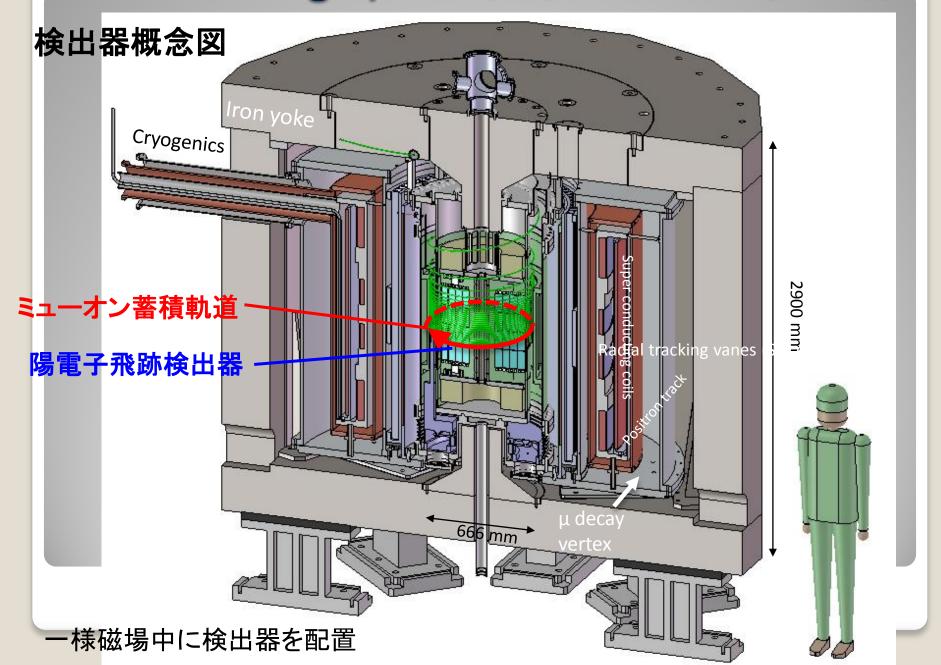
→ magic momentum

$$\gamma = 29.3$$
, p = 3.094 GeV/c \rightarrow (a _{μ} -1/(γ^2 -1)) = 0

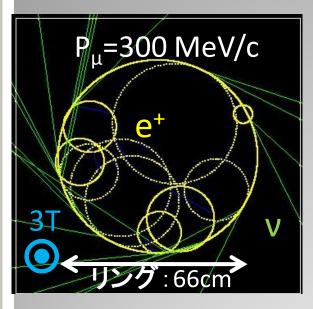
$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\beta \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{E}{c} \right) \right]$$
 EDMの項:アッパーリミット から無視 (d. ~1e-19e*cm)

(d_{lim}~1e-19e•cm)

米国フェルミ国立研究所(FNAL) で継続する計画あり。5倍の精度(0.1ppm)


新実験の挑戦

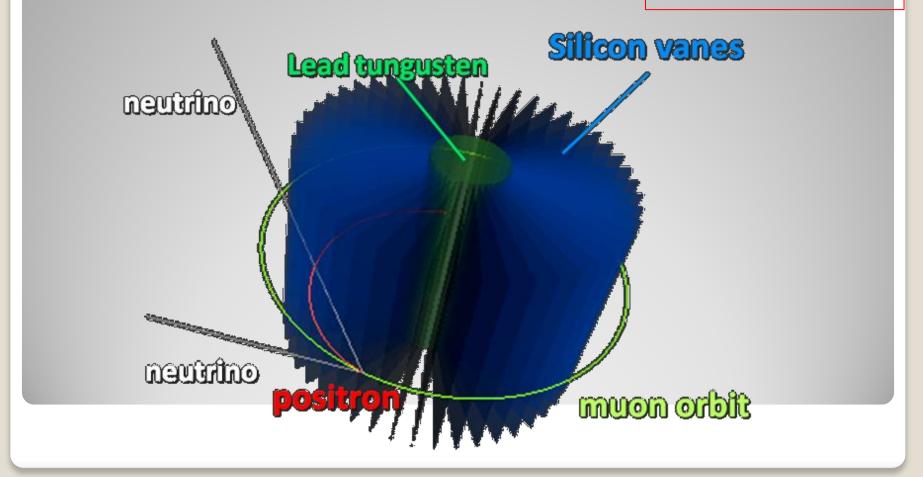
$$\vec{\omega}_{a} + \vec{\omega}_{EDM} = \vec{\omega}_{S} - \vec{\omega}_{c} = -\frac{q}{m_{\mu}} \left[a_{\mu} \vec{B} + \left(\frac{1}{\gamma^{2} - 1} - a_{\mu} \right) \left(\vec{\beta} \times \frac{\vec{E}}{c} \right) \right] - \frac{2c}{\hbar} EDM \left[\left(\vec{\beta} \times \vec{B} \right) - \frac{\vec{E}}{c} \right]$$


- 貯蔵リング収束電場E=0
 - P_T/P_L ~10 ⁻5 程度のペンシルビーム
 - 室温標的からのミュオニウムをレーザー乖離して 300MeV/c まで加速 γ_{μ} =3 (β_{μ} =0.92)
 - 高強度・高均一度のコンパクト貯蔵リング磁場
 - 3 T (R=33.3cm), 1ppm local → MRI技術応用
 - 非常に弱い(<0.1ppm)収束磁場オプションも検討
- コンパクト貯蔵リング内側に更にコンパクトな崩壊陽電子検出器

J-PARC muon g-2/EDM実験における検出器

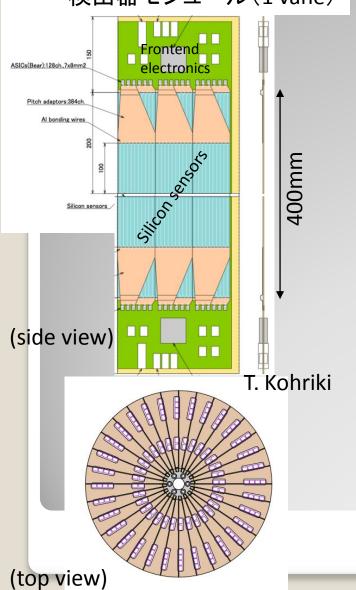
陽電子飛跡検出器への要求

top view (崩壊陽電子) by Geant4

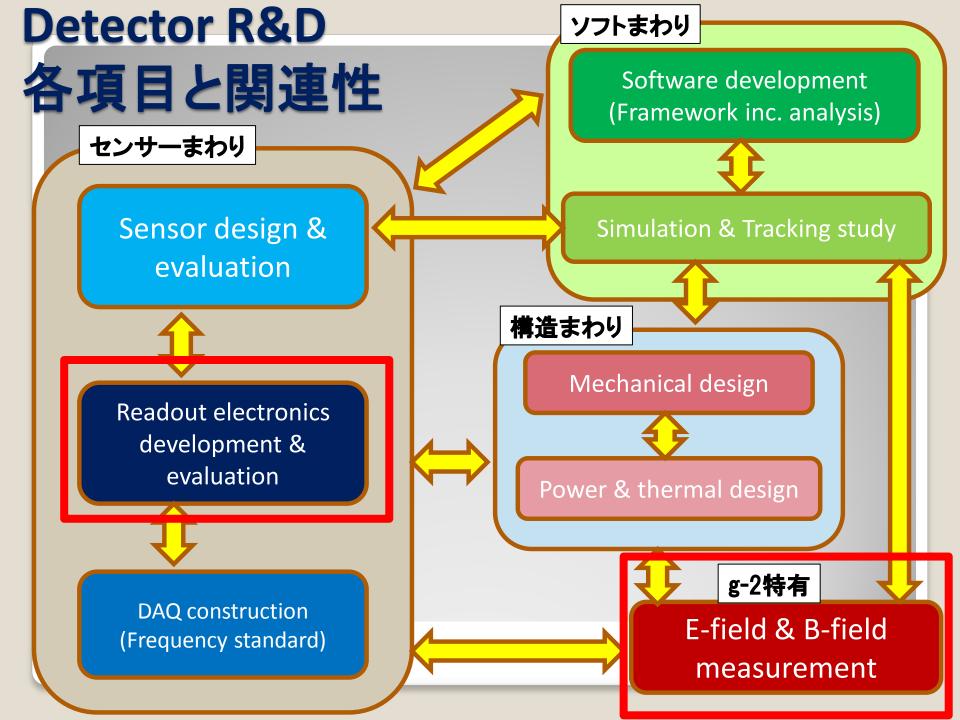

- 一様磁場中を周回するミューオンの崩壊陽電子の飛跡・時間測定
- 貯蔵リング内側に検出器
- 高磁場 3T
- ・ ミューオン蓄積領域の磁場変動小(<10ppm)、ゼロ電場(<<10⁻2V/cm)
- 高イベントレート > 10 MHz
- 大きなレート変化(測定の最初から最後で2桁減少、early-to-late)
- J-PARCのビームパルス構造(25Hz)に同期したデータ読み出し
- 多数のヒット点から陽電子飛跡を検出する必要

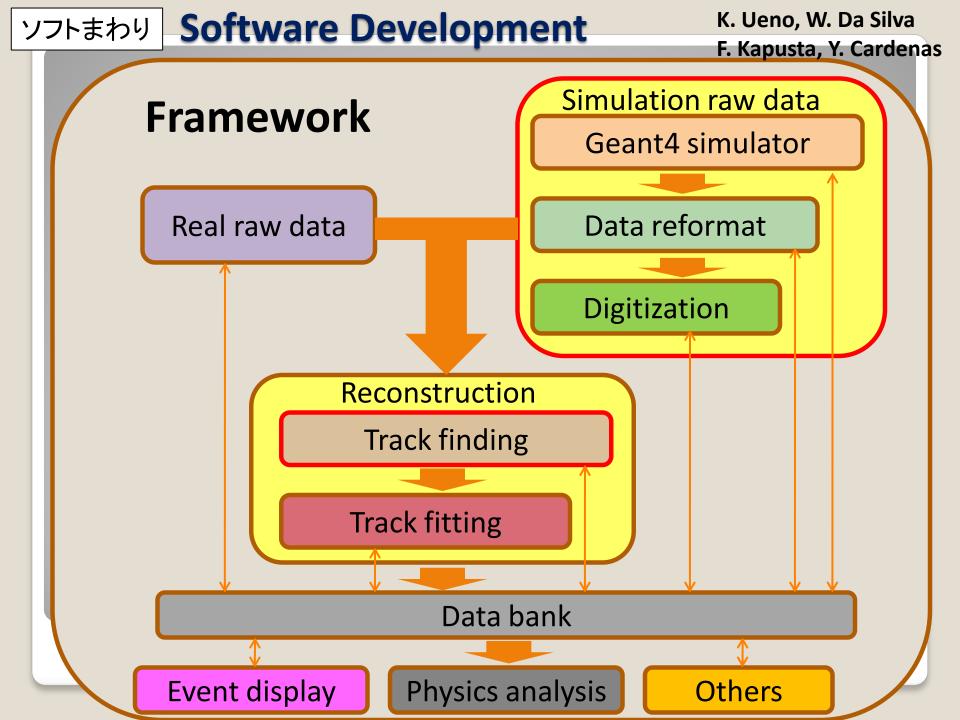
陽電子飛跡検出器

シリコンベーンストリップ検出器

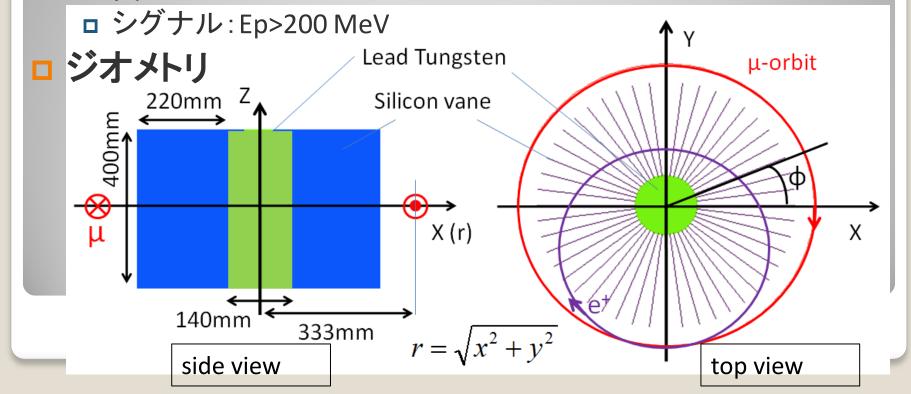

シリコンストリップ検出器を放射状に配置

高いgranularity 早い応答 高安定性


シリコンストリップ検出器

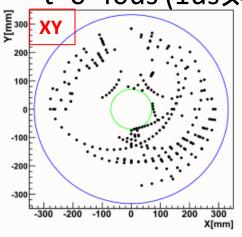

検出器モジュール(1 vane)

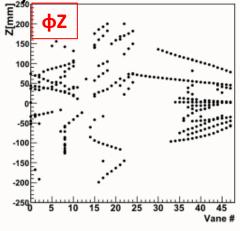
Item	Specifications
有感領域	240mm (radial) x 400 mm (axial)
ベーン数	48 (subject for optimization)
センサー	Double- or single-sided Silicon strip sensor
ストリップ	axial-strip: 188µm pitch, 72mm long, 384 ch radial-strip: 255µm pitch, 98mm long, 384 ch
センサーサイズ	74 mm x 98 mm x 0.32mm
センサー数	576 (12 sensors per vane)
チャンネル数	442,368 ch
時間測定条件	Period: 33μs, Sampling time: 5ns

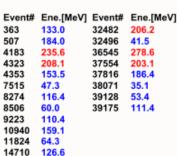


シミュレーション

- □ Condition(理想状況下)
 - □ 磁場:3 Tesla
 - □ 電場:0 V/m


 - □ R_{...}: 333mm
 - □ 真空下


- □ 検出器
 - □ Vane #:48
 - □ サンプリング rate:5nsec
 - ストリップピッチ: 200μm
 - □ 厚さ:300μm



ヒットイベントの時間変化

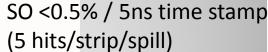
t=0-40us (1us刻み)

18030

67.0

123.8 31.2

205.5



10000 15000 20000 25000 30000 35000 40000 45000 50000

G4 simulation

1 spill (40000 muon decays)

15 e+ signal, 30 BG signal at first 5ns

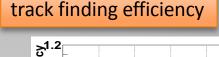
Signal: e+ >200MeV

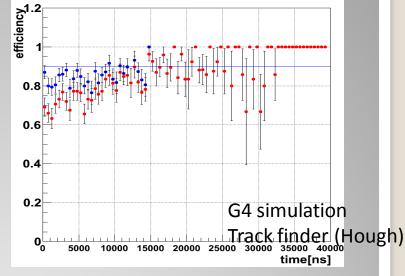
BG: e+ <200MeV, δ -ray, shower

今後、より現実に近い ジオメトリに変更

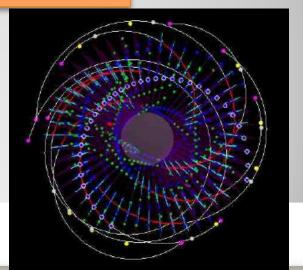
K. Ueno W. Da Silva F. Kapusta

トラッキング


Track finding


- Hough transform & clustering in φZ-plane
- Track finding efficiency ~80% (for single track > 90%) 全時間領域で90%以上が目標

Track fitting


GENFIT(Karman filter)

Multi track reconstructionツールを現在開発中

Single track fitting

センサーまわり

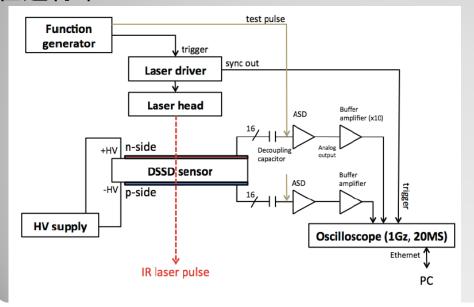
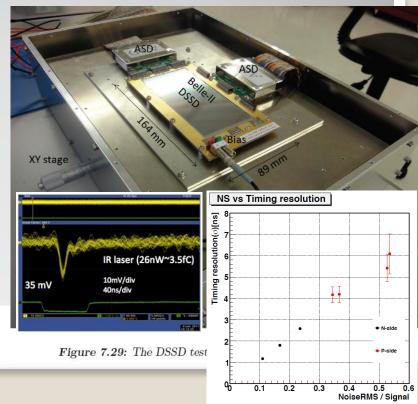
T. Kakurai, T. Mibe, O. Sasaki, T. Kohriki

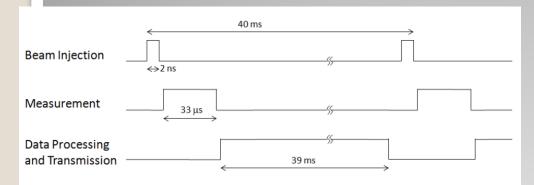
S. Nishimura

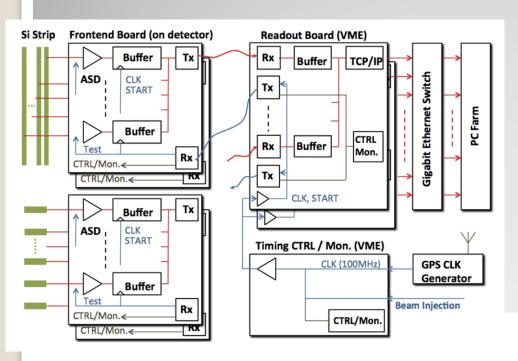
センサー評価

DSSD(Belle-II)、赤外レーザーを用いた評価 Early-to-late効果の系統的なスタディ その他センサーのレスポンススタディ ⇒今後シミュレーションへfeedback

現在進行中


Figure 7.28: Diagram of the silicon sensor test set up



センサーまわり

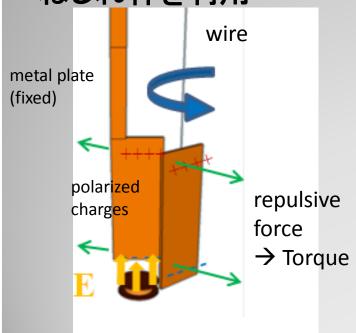
DAQ

O. Sasaki, T. Mibe M. Tanaka, T. Uchida J.F. Genat, K. Ueno

- J-PARCの25 Hzのパルスビーム構造に同期して読み出し。
- ビーム入射後33μsにわたって測 定。次のパルスが来るまでに データを転送。
- ASDのデジタル出力を5nsのタイムスタンプでバッファメモリに格納 (1スピル分)。
- 後段読み出し回路でスピル毎に データを吸い上げる。
- 目標精度に達するためにはタイムスタンプの安定度(ΔT/T <
 4x10⁹)が重要。ルビジウム原子時計とGPSおよび周波数国家標準(産総研NMIJ)に同期したクロックを用いる。

読み出し回路については後ほど

g-2特有

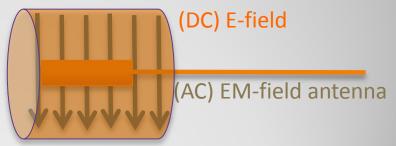

電場測定

J. Murata, T. Sakuda S. Ozaki, H. Murakami

ミューオン蓄積領域でE<<10[mV/cm]を保障する必要あり

- ⇒直接電場測定をしたい ⇒現在静電場を測る方法はない!
- ⇒新しい測定方法を検討中

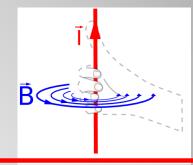




2011年に原理実証試験@立教大 感度は現状~50mV/cm.

⇒さらなる感度向上(~1mV/cmが目標)

AC-シールド法(アイデア段階)

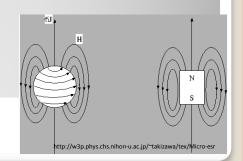

"AC" E-field shield (come and go)

AC-シールドの周波数における 電場測定

磁場測定(検出器による磁場の乱れ)

- The requirement
 - △B/B << 0.1 ppm (ミューオン軌道平均)
 - アクティブシミング使用⇒~10ppmレベルまで許容
 - 検出器による磁場の乱れ <10ppm
- 磁場を作るもの
 - ◦電流
 - Biot-Savart low

$$\mathbf{B} = \int \frac{\mu_0}{4\pi} \frac{Id\mathbf{l} \times \hat{\mathbf{r}}}{|r|^2}, \quad \vec{\mathbf{B}}$$

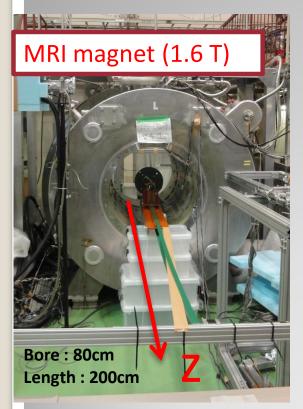


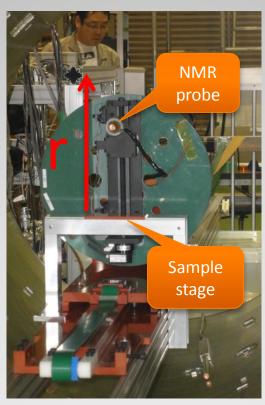
今回は時間の都合上こちらのみ紹介

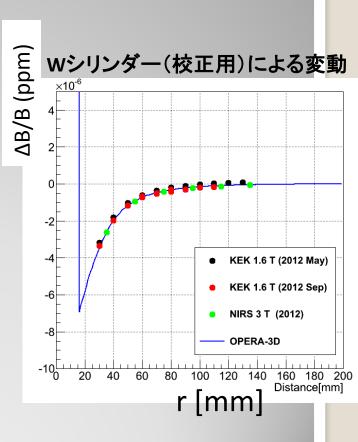
・検出器部材の磁化

$$ec{B} = \mu_0 \left(1 + \chi_m \right) ec{H}$$

$$\frac{\Delta B}{B_0} = \frac{\chi_m dV}{4\pi r^3}$$

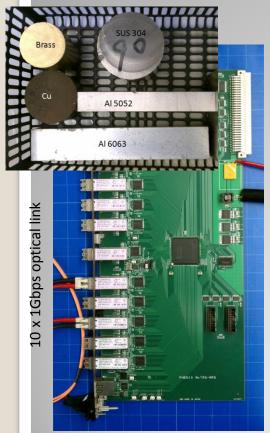



T. Mibe, K. Sasaki


O. Sasaki

磁場測定

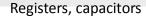
NMR probeを用いた検出器部材の磁場変動測定@低温センター、KEK



- DC-NMR with sweep coil
- NMR sample : H₂O + MnCl
- Super-sonic motors : axial(z) and radial (r) movement
- System developed by Ken'ichi Sasaki (KEK)

O. Sasaki

測定した検出器部材


metals

PHENIX trigger board

PCB board (G10+Cu, 10 layer)

Optical transceiver

FPGA/PROM

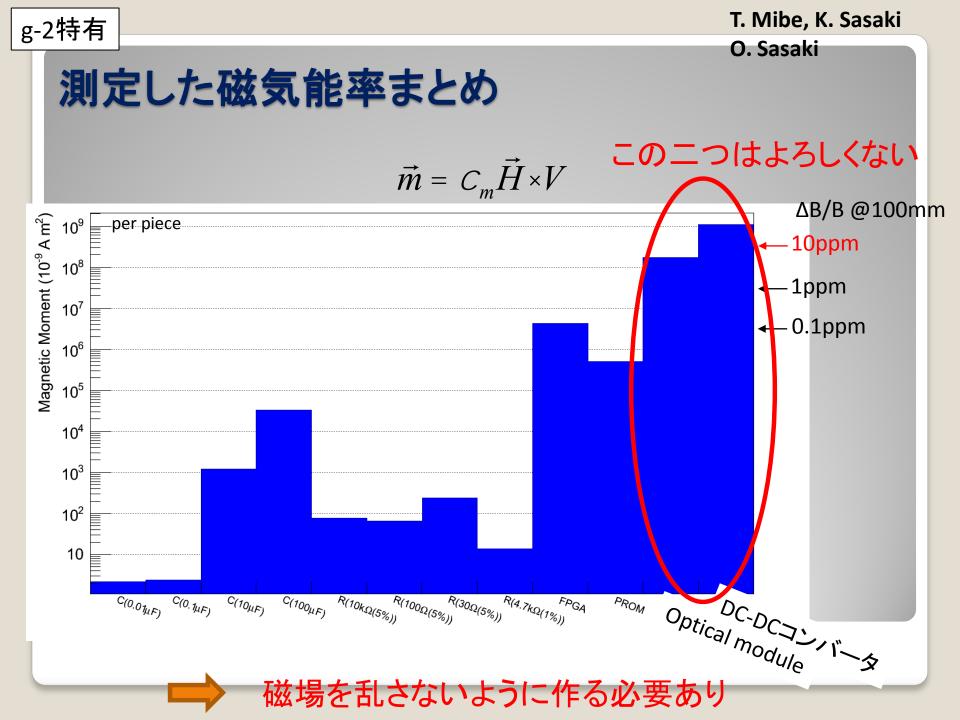
Voltage regulator

Solder (with Pb, Pb-free)

T. Mibe, K. Sasaki g-2特有 O. Sasaki 測定例 **PROM** Optical module **FPGA** [ppm] AB/B z = 30 mmz = 60 mmz = 90 mmz = 0 mmradial distance (mm) - Optical Module -FPGA

 $z = 150 \, \text{mm}$

radial distance [mm]

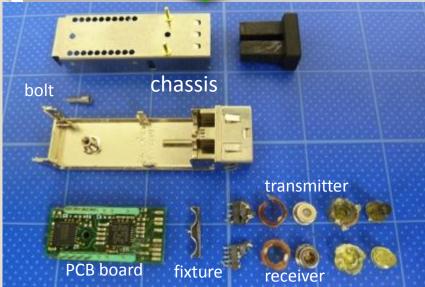

z = 120 mm

radial distance [mm]

PROM

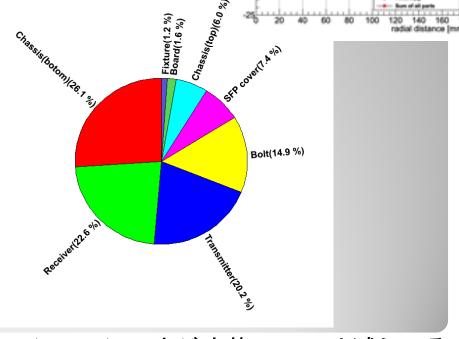
z = 180 mm

radial distance [mm]


T. Mibe, K. Sasaki

O. Sasaki

Optical moduleの詳細チェック



Optical moduleを分解 してそれぞれの パーツの寄与を調査

ネジなどはそもそも 磁石にくっつく

シャーシーネジ交換で40%は減らせる Receiver, transmitterは?

⇒現在検討中

O. Sasaki

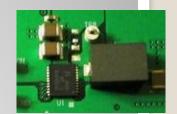
DC-DC コンバータ

- ・電流⇒磁場の乱れ、検出器部での電圧降下
 - 。電流を減らすためにDC-DCコンバータが必須
 - 。磁化による磁場の乱れを抑える必要

現在以下を検討中

インダクタベースコンバータ (Buck converter)

OK:


MHz swiching、ハイパワー 高エネルギー実験でpopular コマーシャルで多数存在

NG:

コイルに磁化物使用

空芯コイルでいけないか 検討中

キャパシタベースコンバータ(Flying capacitor)

OK:

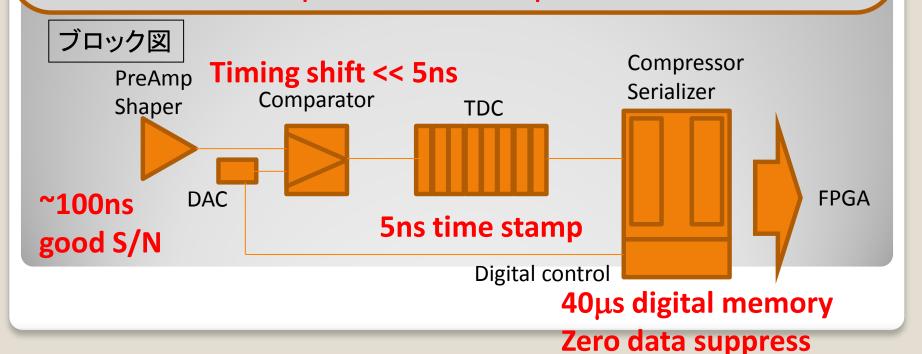
磁化物フリー

$NG(\Delta)$:

~10kHz swiching、ややパワーに制限あり

京大岩下さんによる原理実証試験実施中

M. Tanaka, T. Uchida


M. Ikeno, H. Ikeda

K. Ueno

Frontend ASIC

Requirements

- トラッキング効率
 - Hit rate: 1.6 MHz /strip
- 時間測定
 - \cdot > 5 life time -> 40µs
- ・ 機械構造による制限
 - 768ch in small space -> 128ch/chip

M. Tanaka, T. Uchida

M. Ikeno, H. Ikeda

K. Ueno

読み出し回路要求値まとめ

parameter	Requirement	
Timing measurement	5nsec	
Buffer depth	41µsec	
# of ch	128	
pulse width	~100nsec	
Noise@30pF	<3000e	
Timing shift	<<5nsec	
PWD	as small as possible	

Digital Block

Analog Block

センサーまわり

M. Tanaka, T. Uchida

M. Ikeno, H. Ikeda

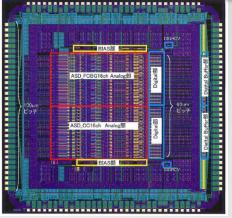
K. Ueno

開発スケジュール&デザイン

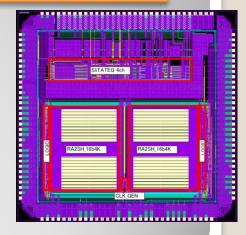
2011 32ch プロトタイプ (Analog & digital)デザイン

2012 32ch プロトタイプ評価

128ch プロトタイプデザイン


2013 128ch プロトタイプ評価、修正

• 2014 量産

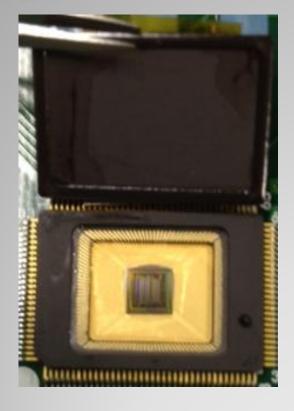

シミュレーション(田中さんの協力)

Vpre=-0.4V, IRF=20uA, IRF4=6uA, Cdet=30pF,Vth=-750mV Preamplifier output Shaper output 1.0 1.0 1.25 Lime (E-6) 1.5 1.75 2.0

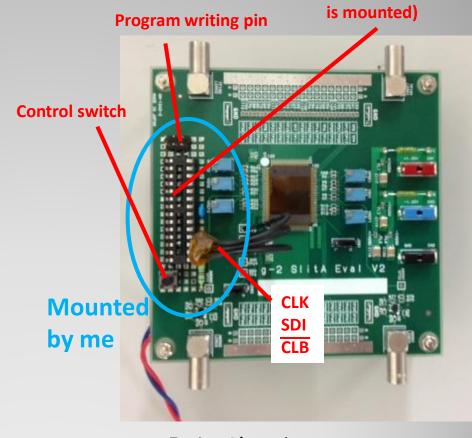
レイアウト (デザイン:田中さん、内田さんの協力)

Analog part (SlitA) 16ch x 2 (F.C. & C.C.)

Digital part (GM2DV0)
16ch


M. Tanaka, T. Uchida

M. Ikeno, H. Ikeda


K. Ueno

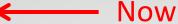
IC socket (AVR is mounted)

SlitA

Process: UMC 0.25µm

評価ボード with AVR

*AVRはデジタルコントロールテスト用

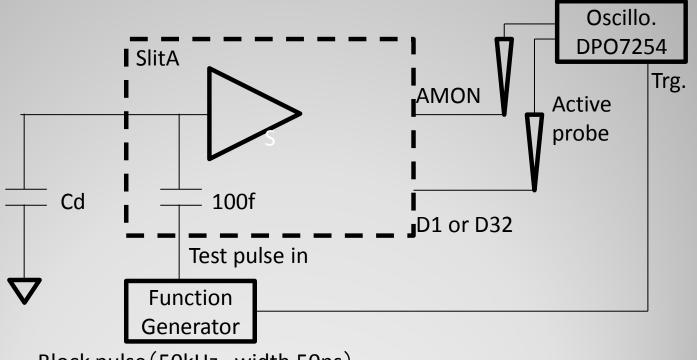

M. Tanaka, T. Uchida

M. Ikeno, H. Ikeda

K. Ueno

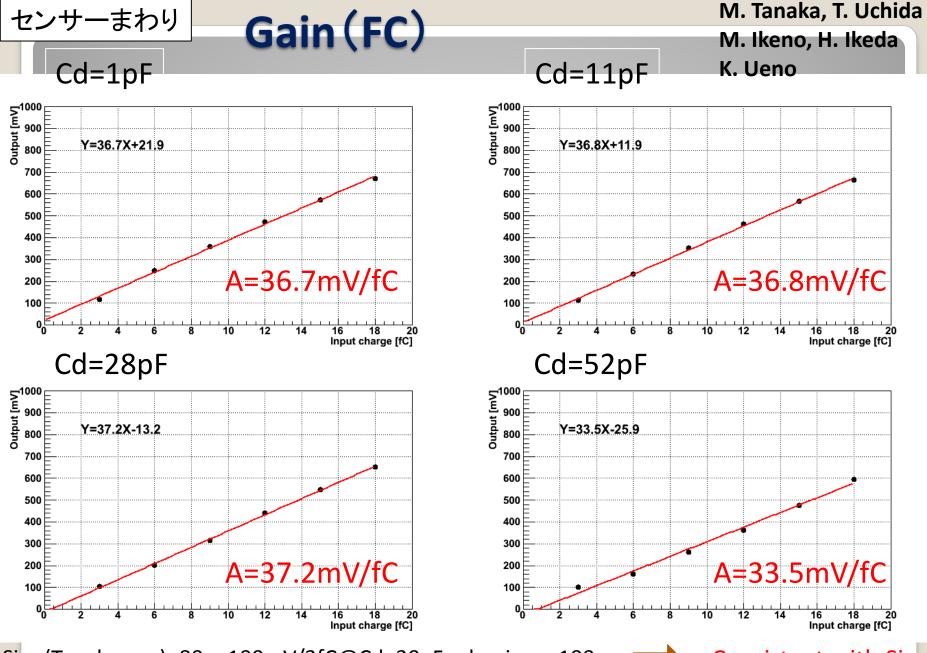
SlitA評価

- Brief check
 - DC check
 - Digital control check
 - Signal check
- Rough check (Tendency & consistency with Sim. check)
 - Gain
 - Noise, jitter


- Pileup
- Threshold scan
- Crosstalk
- Detail check
 - Adjustment of filter
 - Each parameter as well as described above
 - Response of negative charge
- Detector test

センサーまわり

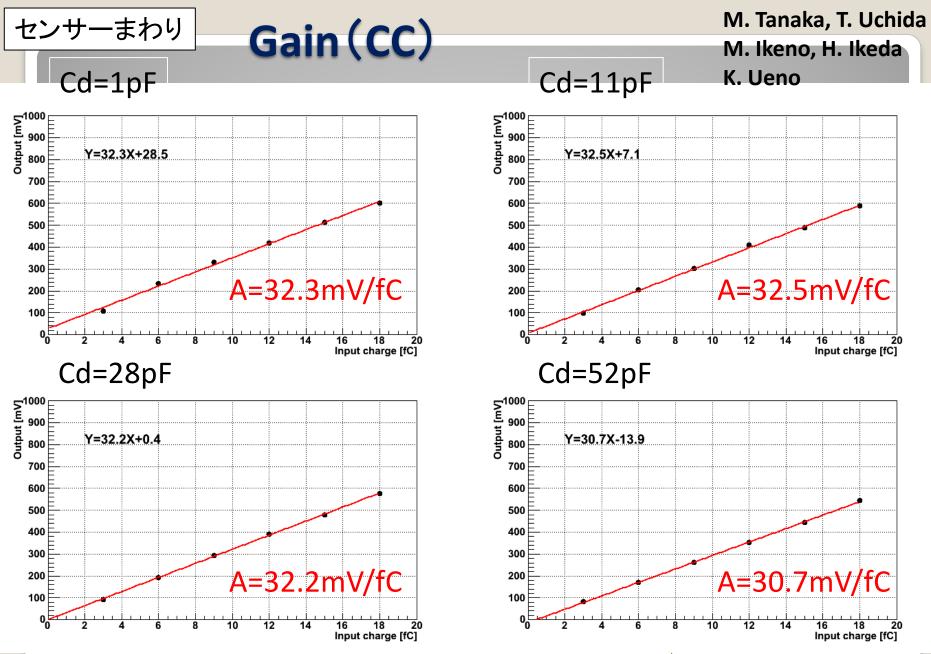
M. Tanaka, T. Uchida


M. Ikeno, H. Ikeda K. Ueno

Setup

Block pulse (50kHz, width 50ns)

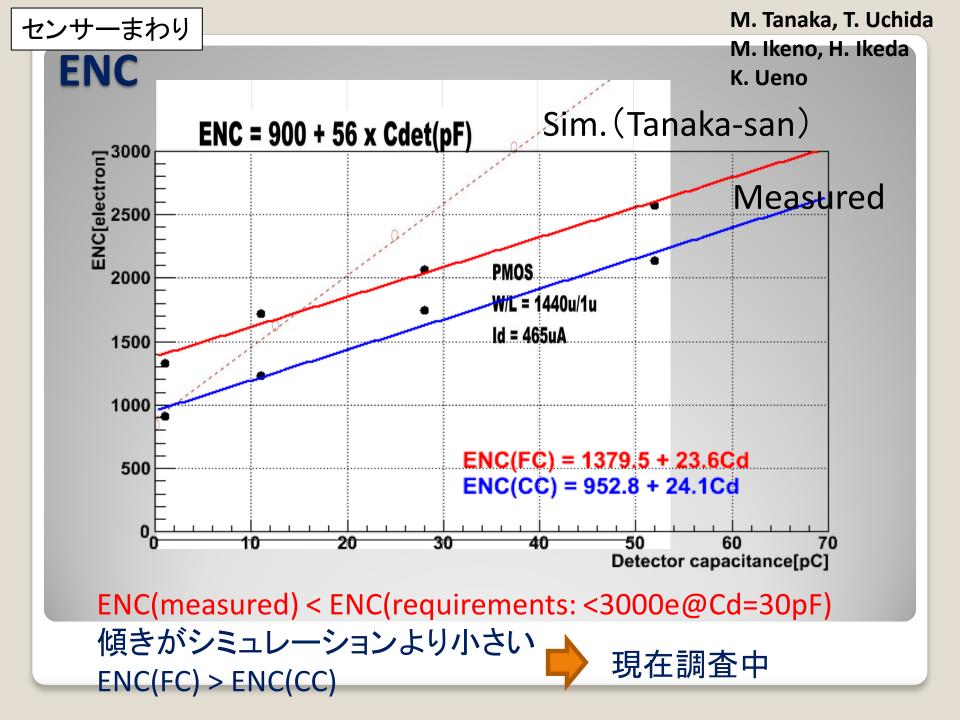
Ampl. 30-180mV (1MIP:30mV)



Sim.(Tanaka-san): $80 \sim 100 \text{mV/3fC@Cd} = 30 \text{pF}$, shaping = 100 ns

Consistent with Sim.

Dynamic range: > 5MIP

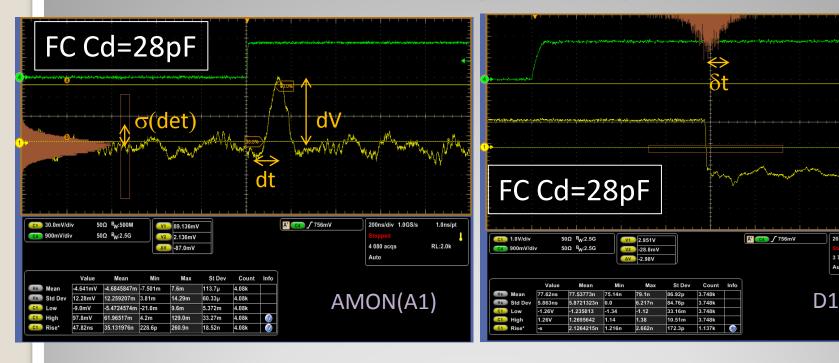


Sim.(Tanaka-san): $80 \sim 100 \text{mV/3fC@Cd} = 30 \text{pF}$, shaping = 100 ns

Consistent with Sim.

Dynamic range: > 5MIP

センサーまわり


Jitter (self consistency check)

M. Tanaka, T. Uchida

RL:1.0k

M. Ikeno, H. Ikeda

K. Ueno

$$\sigma(cal) = (dV/dt)\delta t$$

* It's rough check. -> error > 10%

FC Cd[pF]	δt[ns]	dV[mV]	dt[mV]	σ(cal.)[mV]	σ(det.)[mV]
28	5.9	103	47.8	12.7	12.3
CC Cd[pF]	δ t[ns]	dV[mV]	dt[mV]	σ(cal.)[mV]	σ(det.)[mV]
28	5.2	90	45.1	10.4	9.0

σ(cal) と σ(det)はコンシステント

M. Tanaka, T. Uchida

M. Ikeno, H. Ikeda

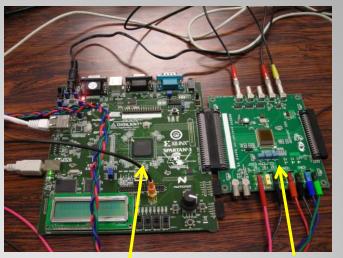
K. Ueno

現状まとめ (SlitA)

parameter	Requirement	Measurement	
Gain	>70mV/MIP	~100mV/MIP	
pulse width	<100nsec	~100ns (アナログバッファ等の影響込)	
Dynamic range	±5MIP	>5MIP	
Noise@30pF	<3000e	~2000e(調査事項有)	
# of ch	128	32	
Timing shift	<<5nsec	-	
PWD	~2mW/ch (sim.)	~2mW/ch	

M. Tanaka, T. Uchida

M. Ikeno, H. Ikeda K. Ueno


GM2DV0 評価 (内田さん)

テストはFPGAを使用。ネットワークを介し データ取得。

機能動作はOK ただし、マイナーなバグあり -> 現在調査中

詳細評価は現在進行中

FPGA board

Evaluation board

detector development team

- KEK
 - Osamu Sasaki
 - Manobu Tanaka
 - Masahiro Ikeno
 - Tomohisa Uchida
 - Takashi Kohriki
 - Naohito Saito
 - Tsutomu Mibe
 - Kazuki Ueno
- Univ. of Tokyo
 - Takuya Kakurai
 - Shoichiro Nishimura
- Rikkyo Univ.
 - Jiro Murata
 - Haruna Murakami
 - Tomomi Sakuda
 - Sachi Ozaki

- JAXA
 - Hirokazu Ikeda
- Kyoto-U
 - Yoshihisa Iwashita
- LPHNE Paris
 - Frédéric Kapusta
 - Wilfrid da Silva
 - Jean-François Genat
 - Jaques David
- CC-IN2P3 Lyon
 - Yonny Cardenas

まとめ

- J-PARC muon g-2/EDM実験
- シリコンベーンストリップ検出器
 - 。要求
 - 200-300MeV/cの陽電子飛跡を検出
 - ・レートに対する高安定性
 - ・ 電場ゼロ(<10mV/cm)
 - ・磁場変動ゼロ(<10ppm)
 - · J-PARCビーム時間構造に同期した読み出し
- 各パートR&D進行中
 - 電場&磁場測定
 - 読み出し回路開発(Open-Itの枠組)
 - ソフトウェア、センサー、DAQなどなど