J-PARC E16実験(とE50実験)における データ読出・収集システム

高橋智則(大阪大RCNP)

- J-PARC E16実験
 - ≻ 検出器
 - ▶ 計測システムのR&D
- J-PARC E50実験
 - ▶ 検出器、計測システムの検討

J-PARC high momentum beam line

- J-PARC MRからの1次陽子ビームの一部 (全部)を分岐させて取り出す。
- spill 2 sec. beam-ON / 6 sec. cycle
- proton :
 - Max. 30 GeV $\sim 10^{10}/sec$
 - E16実験 2016~
- π (unseparated):
 - Max. 20 GeV $\sim 10^7$ /sec
 - E50実験 2019~

スペクトロメーター用双極電磁石

J-PARC E16実験

- 原子核中でのベクターメソン(ρ,ω,φ)の質量を測り、質量分布の変化を系統的に調べる
 e⁺e⁻崩壊チャンネルで不変質量を測定
 - さまざまな原子核標的(H, C, Cu, Pb, …)、 ベクターメソンの運動量依存性(分散関係)、…
- 質量変化⇔| < qq > | ⇔カイラル対称性の破れの回復度合いの定量的な関係を導き出す
- QCD真空の理解・ハドロン質量起源の解明に貢献

E16スペクトロメーター概要とトリガー

- 標的内でのγ conversionからのbackgroundを減らすため薄い標的を使用
 - 複数枚(それぞれ違う核種)の標的を並べてビームで串刺し
 - O(10¹⁰)Hzの大強度ビームで薄さを克服→ O(10⁷)Hz interaction rate
- 運動量測定
 - − $\Delta p/p \sim 1\%$ for 1GeV/c electron → σ_x = 100µm
 - GEMトラッカー(GTR) 56160 strips
- e⁺e[−]を同定
 - hadron backgroundを10⁻⁴に減らす
 - Hadron Blind Detector (HBD) 35880 pads
 - 鉛ガラスEM CAL (LG) 988PMTs
- Level-1 trigger:
- GTR(624ch) x HBD(936ch) x LG(988ch) trigger segmentの3重コインシデンス AND
- e^+e^- hit \mathcal{O} opening angle > 60°

```
Background process
(small opening angle)
•\pi^0 Dalitz decay
\pi^0 \rightarrow e^+e^-\gamma
•\gamma-conversion
\pi^0 \rightarrow 2\gamma
\gamma \rightarrow e^+e^-
```

```
interaction O(10<sup>7</sup>) Hz
↓
trigger 1-2 kHz
```


- KEK-PS時代はTKOを使っていたが性能・保守に限界
- 少ないマンパワー・少ない予算で準備
 - 他の実験で使用されている・実績のある要素を組み合わせる
- GEM用回路
 - 波形がほしい
 - 電荷情報と時間情報が取れる
 - pile upの除去
 - コンパクト
 - 回路設置可能な空間が狭い
 - multiplexer(シリアル)出力付
 - ・ 信号伝送ケーブルの物質量を減らしたい
 - トリガー用のfast outが取れる
 - (GTR, HBD共通化できるとよい)
- LG用回路
 - delay cableを駆逐したい
 - 波形が読めるとよい
 - pile up除去, baseline補正
 - トリガー用のfast outが取れる
- 時刻同期・イベント同期
 - クロック・トリガータグ分配器
- トリガー作成用に大規模汎用ロジック回路
- パラレル→シリアル変換 +高速光通信回路

高速アナログメモリDRS4 ASIC + 市販部品によるdiscriminator を使った回路を開発(Open-It)

FEM: Frontend Electronics Module

APV25s1

Analog Pipeline [Voltage-mode] in 0.25 μ m silicon CMOS technology

- LHC-CMS silicon tracker
 - CMS L1 trigger 100kHz
- 128 ch input
- input range
 - <20fC (VSS=-1.25V, VDD=+1.25V)
 - <40fC (VSS=0V, VDD=2.5V)
- preamp ~50ns peaking (programmable)
- 3 operating modes (deconv., peak, <u>multi</u>), 40MSPS
- 192 cell analog pipeline memory (160 write, 32 read) FIFO length ${\sim}4\mu s$
- 128:1 AMUX
- ENC: 270+38/pF \rightarrow ~1500e for 30cm readout strip
- Output driver: up to $\sim 12m$
- $\sim 350 \text{mW/chip}$

RD51 and SRS

RD51 collaboration organized by CERN

http://rd51-public.web.cern.ch/rd51-public/

World wide MPGD collaboration

- WG1: technological aspects and development of new detector structures
- WG2: characterization and physics issues
- WG3: applications
- WG4: simulations and software tools
- WG5: electronics
- WG6: test facilities

APV25 hybrid card

Incident Angle [degree]

東大中井

e-sys池野

HDMI-1.4 cable

・ 高速差動信号線 4 pair

- TMDS CLOCK, TMDS DATA (TMDS: Transition Minimized Differential Signaling)
- clock 340MHzごとにR/G/B線にそれぞれ10bitを送信→3.4Gbps/lane
- ケーブルインピーダンス100Ω

・ シングルエンド信号線 3+

- CEC (Consumer Electronics Control): 周辺機器制御ライン
- DDC (Display Data Channel): ディスプレイ情報の読み出しの<mark>I2C通信・</mark>HDCP認証動作
- HPD (Hot plug detect): HDMI Rxが接続されていることをHDMI Tx側が検出するのに使用
- HPDとUtilityを差動ペアとして使った双方向全二重の100Base-TX(HEC: HDMI Ethernet Channel)
- 電源 +5V
- シールド付ケーブル(高額なものは何重にも)

- HPD,Utility,+5Vライン
- 電源供給
- として使用

注意:

- ・ type-Dコネクタ(micro-HDMI)はtype-Aコネクタの縮小版ではない。ピンアサインが違う。
- equalizer入りケーブル(active cable)だとデータ伝送の方向が決まっていて自由に使えない。

SRS (classic)

Up to 8 HDMI chiplinks per Adapter card

FEC-V3 16ch ADC ADS5281 x2 12bit, 40MSPS equalizer

PCIe board-to-board connector

16 APV=2048 chを 1 ADC-FEC comboで読み出し可能

- trigger, clock I/F LEMO Twinax (clock) **RJ45**
- trigger, clock I/F LEMO Twinax (clock) **RJ45**

Zero-suppression is implemented.

It works, but …

GEM foil trigger用ASD ASIC 東大小原, KEK-IPNS森野 e-sys田中, 池野

LG-FEM with DRS4 (prototype)

- input: single-ended 16 ch
- input range: -2 to 0V
- 2ch cascaded = 2048 cell
- 2-2.8µsec L1 trigger latency @0.7-1GSPS
- fast comparator to generate trigger primitive signals
- Vth control by on-board DAC
- 100Base-T (SiTCP)
 - TCP: readout
 - UDP: slow control
- Region-Of-Interest readout
- Wave Union TDC (planned)

E16 TRG-MRG (trigger merger)

40mm

trigger decision module

Belle-II Universal Trigger Board3 (UT3)

- VME-6U 3 slot
 - PS: +5V
- Virtex-6 HX565T
- QSFP MGT 64 links via MTP/MPO fibers
 - GTX x40(max. 6.6Gbps) on GTX sub board
 - GTH x24(max. 10Gbps) on main board
- RJ45
 - trigger, clock $\rm I/F$
- NIM user I/O
 - in: 8ch, out: 8ch
- dual stacked VHDCI
 - LVDS I/O: max. 128pair

10-12 TRG-MRGs

LVDS sub board

trigger/clock distribution module

Belle-II FTSW (ver. 2.1)

- VME-6U 2slot
 - PS: +5V
- Virtex5 LX30 + Spartan3AN
- on-board clock: 127MHz
- RJ45 (dual stacked)
 - LVDS in x1, out x20
 - clock, trigger over a LAN cable (CAT-7)
 - < 30ps jitter with jitter cleaner
 - 8b10b encoded trigger data 254Mbps
 - JTAG on LVDS over a LAN cable
- slow control
 - via VME bus
 - via 100Base-T (planned)

LVDS clock/trigger out portのLAN cable使用ピン

LAN	capie) 定用し、	
ACK	\longrightarrow	1-2
TRG	←	3-6
RSV	\longrightarrow	5-4
CLK	←	7–8

JTAG on LVDS のLAN cable使用ピン TCK 1-2 TMS 3-6 TDI 5-4

TDO **~**7-8

DAQ software

- DAQ-Middlewareを使用

 ネットワークベースのデータ収集システム
- GEM readout (RD51-SRS)用コンポーネントを開発(Open-It)
- LG readout用コンポーネントはこれから準備
- 一部のeventをonlineでevent buildしてモニターコンポーネントへ渡す
- 計測室のデータは定期的にKEKCC, RIKEN CCJ/RICCといった計算機クラ スターへ転送

e-svs濱田.千代

J-PARC E50実験

- ハドロンを記述するための 自由度
 - constituent quark → 励起状
 態・エキゾチックハドロン
 の理解には不十分
 - <mark>diquark</mark>: カラーを持った2 quarkのcluster
- heavy quarkを含むバリオン
 - カラー磁気相互作用は クォークの質量に反比例し て弱くなる
 - 残りの軽い2 quarkの相関が 励起状態準位に現れる
 - λ mode, ho mode
- charmed baryonの励起状態
 スペクトルの測定を通して
 diquarkにせまる

E50 spectrometer

- Large acceptance
 - D*: 50–60%
 - decay particle: >80%
- Resolution
 - $\Delta p/p < 1\% (0.2\% @ 5 GeV/c)$
- High rate
 - beam intensity: 6x10⁷ /spill
 - event rate: 3M/spill
 - L1 trigger rate:
 - w/o online tracking: 160k/spill (80kHz)
 - w: online tracking: <30k/spill (<15kHz)

of readout channels

- Fiber tracker: \sim 9200
- Wire chamber: \sim 7500
- Beam RICH: ~260
- RICH (aerogel + $C_4 F_{10}$): ~10000
- TOF: ~500
- (SSD: ~4000)

total: 27000-31000 ch

E50読み出しシステムの検討

- Level-1 trigger rate:
 - charm: 10-80kHz (online trackingできるかに依存)
 - (strangeness: ~80 kHz(by-product), charmの実験とは別にbeam timeを要求?)
 - E16と同じトリガーモジュール (= Belle2のモジュール)が使えそう
 - デッドタイムの削減・パイプライン化必須
- Fiber tracker ~ 9200ch
 - 候補: MPPC + EASIROC + FPGA TDC (LSB=1ns)
- RICH ~ 10000 (+ beam line RICH ~260) ch
 - 候補: MPPC + EASIROC + FPGA TDC (LSB=1ns) (fiber trackerの回路と共通化したい)
- Wire chamber ~ 7500ch
 - 候補: Belle−II CDC用ASD + FPGA TDC (LSB=1ns)
 - RECBE, RAINERは高いと思うので低コスト版を作りたい
- TOF 450-500ch
 - 検出器候補: segmented plastic scintillator, MRPC(磁場中), diamond?
 - σ <100ps(検出器から回路まで含む) --> 回路だけでなく検出器も含めたR&Dが必要
 - target近傍はhigh rate (3mmセグメントのシンチだと 3MHz/chのhigh rate)
 - 回路候補
 - HPTDC
 - FPGA HR-TDC (wave-union TDC): 原理は理解。実装のR&D→?
 - > 500MSPS waveform digitizer: FADC? パイプライン化された高速アナログメモリ?
- (SSD \sim 4000ch)
- Software
 - 予想データレート ~ 3-30 TB/day (charmの実験、圧縮前)
 - 候補: DAQ-Middleware?
 - ハードウェアトリガーなしというのはどうか?
 - O(100) Gbpsの回線とデータを1/1000以下に削減するためのCPU farm

Summary

J-PARC E16実験

- ベクターメソンの核内質量変化を系統的に測定
- ハドロン質量生成機構・QCD真空の性質の解明に貢献
- high-p beam line 10¹⁰/secの大強度ビームを使用(2 sec. beam-on/6 sec. cycle)
- 2016年実験開始(最初は検出器1/3,段階的に増設)

計測システムのR&D

- 読み出し回路: 電荷情報・時間情報の取得およびパイルアップ除去のため波形を記録
 - GTR (~56000 ch), HBD (~36000 ch)
 - APV25, CERN RD51 SRSを使用
 - 256ch APV cardの開発
 - LG ~ 1000 ch
 - DRS4を使ったADCの開発
- トリガー回路: ~ 2600 chのトリガーセグメントから来る信号のTDC情報(LSB 4 ns以下)を高速光通信で集約し、 遅いベクターメソンのe⁺e⁻崩壊事象を判定
 - Belle2の汎用ロジック回路(Belle2 UT3)およびクロック・トリガー分配回路(FTSW)を使用
 - ・ GEM foil信号用ASD ASICの開発
 - Trigger merger boardの開発
- DAQ-Middlewareによるデータ読み出し trigger rate 1-2kHz, 660MB/spill
- 今後の課題
 - 各要素の統合
 - 高レートでのテスト
 - トリガーロジックの開発
 - 回路の量産・品質検査
 - LG読み出し用DAQ component開発
 - 検出器のアライメント,
 - HV, LV, gas flow, …の制御・監視システムの開発, etc. …
- J-PARC E50実験
 - チャームドバリオン励起状態の精密測定を通して、ダイクォーク自由度の検証・ダイクォーク相関を研究
 - 2019年 実験開始予定
 - Fiber tracker 9200ch, Wire chamber 7500ch, RICH 10000ch, TOF 500ch
 - trigger rate 10-80kHz, data rate: 0.2-2GB/spill (rough estimation for charm tagged events)
 - <u>– 検討中・・・</u>

back up

GEM tracker (GTR)

- gas: Ar CO2 70/30
- hole diameter: Copper/Kapton: 65/35 μ m
- hole pitch: $140\mu m$
- strip ptich: X 350 μ m, Y 1400 μ m
- hit rate: max. 5kHz/mm²
- 大きさ3種類
- 低物質量:トラッカー3層で0.75%X₀
- 入射角30°まで σ_x <100 μ mを達成(timing法)

Y. Komtasu et al., NIM A732,241(2013)

Hadron Blind Detector (HBD)

K. Kanno, IEEE NSS/MIC Conf. Rec. (2013)

²⁴

Leadglass EM calorimeter (LG)

- TOPAZ, KEK-PS E362(K2K)実験で使われた LGを改造
 - hit rateを下げるために分割
- PMT約800本はBelle ACCの3 inch fine-mesh PMT(Hamamatsu R6683)に付け替えを予定

 - 強磁場対策

SRS (ATCA)

ATCA blade (Virtex6 130T + DDR3-RAM slot x2)

- + 2 HDMI mezzanine cards (24 ADC channel/mezzanine)
- + Rear Transition Module

SRS-ATCA blade

48 APV = 6144 ch can be read by 1 SRS-ATCA blade.

