KEKB入射器におけるタイミング配信システム監視用 TDCの開発

諏訪田 剛、宮原房史, 古川和朗 KEK加速器 庄子正剛, 池野正弘, 田中真伸 KEK素核研

Tsuyoshi Suwada / KEKB Injector Linac

Introduction

- 現在入射器では、次期計画SuperKEKB(Super Bfactory)に向けた入射器増強とその高度化が進行中.
- タイミング配信システムは入射器高度化に向けた重要 項目の1つ.
- Event-basedタイミング配信システムを現在増強中.
- タイミング配信システムに対しTDC-based 監視システム も構築中.
- VME/FPGA-based TDC (dynamic range > 20ms, time resolution ~ 1ns)の量産を終了した.

Tsuyoshi Suwada / KEKB Injector Linac

Super KEKB Accelerator Complex

Upgraded components for SuperKEKB

SuperKEKB Injector Linac

	KEKB (e+/e-) achieved	SuperKEKB (e+/e-) required
beam energy	3.5 GeV / 8.0 GeV	4.0 GeV / 7.0 GeV
stored current	1600 mA / 1200 mA	3600 mA / 2620 mA
beam lifetime	150 min / 200 min	10 min / 10 min
bunch charge	primary e ⁻ e ⁺ e ⁻ 10 -> 1.0 nC / 1.0 nC	primary e ⁻ e ⁺ e ⁻ 10 -> 4.0 nC / 5.0 nC
# of bunches	2 / 2	2 / 2
beam emittance (γε)[1σ]	2100 mm / 300 mm	10 mm / 20 mm
energy spread $\sigma_{\rm E}/{\rm E}$	0.125 % / 0.05 %	0.07 % / 0.08 %
bunch length σ_{z}	2.6 mm / 1.3 mm	0.5* mm / 1.3 mm

*(assuming bunch compression after DR)

ICFA Mini-Workshop on Commissioning of SuperKEKB and e+e– Colliders

Essential Timing Issues for Simultaneous Injection

Takako Miura (KEK)

Tuesday 12 November 2013

Simultaneous top-up injection

Linac provides quite different types of beams for each ring. ⇒ More than 150 of Linac parameters are different.

ur rings are operated with top-up filling mode, multaneously".	Direction	Particle	Eneragy	Charge
"simultaneously".	KEKB HER	e^-	7.0 GeV	5.0 nC
- The beam direction is changed in 50Hz	KEKB LER	e^+	4.0 GeV	4.0 nC
The shows we we stowe are shown and in a short time.	\mathbf{PF}	e^-	2.5 GeV	0.2 nC
- The above parameters are changed in each time.	PF-AR	e^-	6.5 GeV	5.0 nC

Fast control system is needed.

(The "star-topology" optical network is used also for this.)

Trigger timing distribution system (I)

- 1. 4種類の異なるエネルギーをもつ電子陽電子を下流リングへ入射
 - SKEKB(高エネルギー実験): *Ee*-=7 GeV, *Ee*+/*Ee*-=4/3.5 GeV,
 - PF, PF-AR(**放射光実**験): *Ee*-=2.5 GeV, *Ee*-=3 GeV
- これを達成するためにe-/e+ビームをパルスごと(50Hz毎)に切り換え下流のリングへ供給(Top-up injection、蓄積電流を保持しながら継ぎ足し入射する方式、現在では主流)
- 3. 入射器では様々なパルスデバイスに異なるタイミングをパルスご とに切換えて配信(150パラメータ以上)
- 4. KEKB後半からCAMAC-based systemからVME-based Event Generator/Receiver (EVG/EVR) systemへ移行
- 5. KEKBでは、KEKB/PF両者へのTop-up injectionに成功(世界初)!
- 6. タイミング配信のわずかな誤動作も多大なマシン損傷へと発展
- 7. 信頼できるタイミング配信システムの監視システムが肝要

Tsuyoshi Suwada / KEKB Injector Linac

Large area synchronization

The functions of all Linac devices belonging to beamline must be synchronized, otherwise a beam cannot be transferred.

Main Trigger Station (or Main Timing Station) controls the operation.

- Timing synchronization of all devices.
- Delivering trigger via the "star-topology" optical network.

Trigger timing distribution system (II)

- 市販のEVG-EVRシステム(VME EVG230-EVR230R, Micro-Research Finland/MRF, CPU MVME-5500)を購入
- 複雑なタイミング配信スキームをソフトウエアで自在に生成可
- 2kB データバッファーをもち様々な情報の送受信可
- ・ 送受信速度 57.12MB/s, EVG-EVR間は2.3GHz内部クロックで同期

Tsuyoshi Suwada / KEKB Injector Linac

Trigger timing distribution system (III)

- 入射器におけるパルスデバイス
 - ・ パルス電磁石、電子銃、ビームモニター、高電圧クライストロン
 - ・ キッカー/セプタム電磁石、

Table 1: Timing specifications required for the new trigger timing distribution system

Parameter	Value	Units
Trigger fiducial frequency	50	Hz
RF clock frequency	114.24	MHz
Clock precision (rms)	4.4	\mathbf{ps}
Coarse time step	8.75	ns
Fine time step	400	\mathbf{ps}
Timing jitter (rms)	10	\mathbf{ps}
Delay dynamic range	> 1	S

Tsuyoshi Suwada / KEKB Injector Linac

VME/FPGA-based TDCの開発

- タイミング配信システムに対する監視
 - 光ファイバーによるタイミングドリフト、タイミングジッターを監視
- 要求仕様
 - VME/FPGA-basedシステムで構築 (VME64x)
 - 入射器の基本トリガー周波数 50 Hz (リング周回周波数と同期)の監視
 - クライストロンの点火タイミングの要請、20 ± 1msの精度が必要
 → 広ダイナミックレンジの要請 (> 20 ms)
 - ・ ビーム位置モニターへのトリガータイミングの要請→ 高精度の要請 (~1 ns)

Basic parameter	Value	Units
Number of common starts	1	
Number of stops	16	
Number of multistops	4	
Number of bits	32	
Dynamic range (max.)	4.3	\mathbf{S}
Resolution	1	ns
Clock frequency	250	MHz
Gigabit Ethernet	available	

Table 2: Basic specifications designed for the VME/FPGA-based TDC

- Xilinx Spartan-6 (XC6SLX75) FPGA
- SiTCP giga-bit Ethernet embedded

Tsuyoshi Suwada / KEKB Injector Linac

VME/FPGA-based TDCの開発

Circuit architecture of FPGA-based TDC

Specification of an external clock with TCXO

TCXO, EPSON TG-5501CA

Table 3: Specifications of the external clock

Р	arameter	Value	Remarks
_	Clock frequency	50 MHz	
	Frequency stability	$<\pm 1.0 \times 10^{-6}$	$T_e = 25 \pm 2^{\circ}\mathrm{C}$
	Temperature characteristics	$<\pm 0.28 \times 10^{-6} {}^{\circ}\mathrm{C}^{-1}$	$T_e = -40$ to 85° C

Tsuyoshi Suwada / KEKB Injector Linac

Delay time T_{set} vs. <T> - T_{set}

with a test pulser, SRS Model DG645

Delay time T_{set} vs. $|<T> - T_{set}| / T_{set}$

Tsuyoshi Suwada / KEKB Injector Linac

Quantization error & Integral nonlinearity

measurements

$$c = Frc [T/T_0], \sigma_T = T_0 \sqrt{c(1-c)}$$

Tsuyoshi Suwada / KEKB Injector Linac

Temperature dependence and gradient measurements

Summary

- We have successfully fabricated and tested a new VME/FPGA-based TDC with a wide dynamic range greater than 20 ms and a resolution of 1 ns.
- 2. The required specifications of the TDC were realized on the basis of the suitable design with a highprecision temperature-compensated external clock with an accuracy of 0.13 ppm.
- 3. The obtained results show that the accuracies of the time-duration measurements are less than 1 ns and 2.6 ns within dynamic ranges of 7.5 ms and 20 ms, respectively.

Tsuyoshi Suwada / KEKB Injector Linac

Acknowledgment

 The authors wish to thank the Open Source Consortium of Instrumentation (Open-It) of KEK for its cooperation and advice on the electronics design of this work.

Backup files

Tsuyoshi Suwada / KEKB Injector Linac

SKEKB Parameters

	2011 Feb. HER no wiggler	2012 Feb. HER 60% wigglers
Energy (GeV) (LER/HER)	4.0/7.00729	4.0/7.00729
β_{y}^{*} (mm)	0.27/0.30	0.27/0.30
β_{x}^{*} (mm)	32/25	32/25
ε _x (nm)	3.2/5.3	3.2/ <mark>4.6</mark>
$\epsilon_{y}^{}/\epsilon_{x}^{}$ (%)	0.27/0.24	0.27/ <mark>0.28</mark>
σ _v (nm)	48/62	48/62
ξ _y	0.0897/0.0807	0.0881/0.0801
σ_{z} (mm)	6/5	6/5
I _{beam} (A)	3.6/2.6	3.6/2.6
$N_{ m bunches}$	2500	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	80	80

HER ε_x with 60% wigglers is used as the nominal value. Lower HER ε_x can relax some other parameters ($\beta_{x/y}^*$, $\varepsilon_y/\varepsilon_x$, etc.). At present, larger $\varepsilon_y/\varepsilon_x$ in HER is adopted.

e+/e- injector upgrade

Linac Overview

SuperKEKB での Linac の役割

- ▲ 40 倍の Luminosity のために
 - 2 倍の蓄積電流
 - ・ ナノビームによる 20 倍の衝突率
 - → 低エミッタンスの入射ビーム
 - → 短いビーム寿命
- ▲ Linac での試練

→ Linac のビーム電流の増強(特に陽電子)

→ Linac のビーム電流の増強

Event Timing System

MRF modules are used. Event Generator (EVG) Event Receiver (EVR)

VME-MRF-230 VME-MRF-230RF

EVG: sending 256 kinds of Event (Code#0-#255) EVR: function can be programmed for each Event Code# One optical cable can be considered as 256 signal lines in parallel. Timing accuracy of this system: typically <15ps.

delivered f	rom the KEKB main	EVR
Internal clock	Synchronized with input RF clock	locked by Event (synchronized with EVG)
Trigger	Input TTL	Event
Function	Event sending, up to 2048 Events in a trigger	NIM/TTL signal production, CPU interrupt

Trigger timing distribution system (II)

- 入射器中央にタイミング送信機@Main EVGを設置
- 入射器ラインに沿って受信機EVRを設置
- EVG-EVRは光ファイバーでスター接続される

Tsuyoshi Suwada / KEKB Injector Linac