# J-PARC/MLFにおける ステライルニュートリノ探索

#### 10/13/2016,計測システム研究会@J-PARC 岩井 瑛人,ミシガン大学





ステライルニュートリノ探索

•1988年以来、既知のニュートリノ振動では説明できない、混沌 とした実験事実がある。

|                      |                      |                                                       |                                 |               | LSND                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|----------------------|-------------------------------------------------------|---------------------------------|---------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 実験                   | ニュートリノ源              | 信号                                                    | 有意性                             | E/L           | Phys. Rev. D <b>64</b> , 112007 (2001) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LSND                 | μ decay at rest      | $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ | 3.8 σ                           | 40MeV/30m     | Beam Excess                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MiniBooNE            | π decay in<br>flight |                                                       | $\nu_{\mu} \rightarrow \nu_{e}$ | 3.4 σ         |                                        | $ \begin{array}{c c} & 15 \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ |
|                      |                      | $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ | 2.8 σ                           | 800MeV/600m   | 10                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |                      | comb.                                                 | 3.8 σ                           |               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Gallium/SAGE         | e capture            | $v_e \rightarrow v_x$                                 | 2.7 σ                           | <3MeV/10m     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 原子炉                  | β崩壊                  | $\overline{\nu}_e \rightarrow \overline{\nu}_x$       | 3.0 σ                           | 3MeV, 10-100m |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $O(1 \rightarrow n)$ |                      | L/E, (meters/MeV)                                     |                                 |               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

- O(1eV<sup>2</sup>)のニュートリノ振動??
- ・LEP実験より、質量M<sub>z</sub>/2以下の弱い相互作用(Zとカップル)するニュートリノは3種類のみ
- ➡ 弱い相互作用をしないニュートリノ??
  ✓事実なのか、間違いなのか、完全決着(5o以上)を目指す!



#### MLFの中性子源: RCS + HG target in MLF

- RCSの大強度陽子ビームによる世界クラスの大強度<u>中性子源</u>
  - ビームエネルギー: 3 GeV +ニュートリノ源!!
  - ビームパワー: 設計値:1MW, 連続利用運転: 500 kW
- ビームから1µs以降を選ぶことにより、静止ミューオン崩壊 由来のニュートリノのみを観測することができる





- シグナル:  $\overline{\nu}_{\mu} (\rightarrow \overline{\nu}_{4}) \rightarrow \overline{\nu}_{e}$
- ニュートリノ源:  $v_{\mu}$  from  $\pi^+ \rightarrow \mu^+ \rightarrow e^+$  decay at rest
  - intrinsic  $\overline{v}_e: \pi \to \mu \to e^-$ チェーンは  $\pi/\mu$  捕獲により 3 桁抑制
- ・逆β崩壊 (IBD: v<sub>e</sub> + p → e<sup>+</sup> + n)の遅延同時計測
  - 断面積、エネルギー再構成がよく理解されている
  - 後発事象は、Gdによる中性子捕獲からの(複数の)γ線とし て観測
- •LSNDの直接的な追検証が可能





- ベースライン: 24 m
- 有効体積: 50トン
- エネルギー分解能: σ<sub>E</sub>/E[%]~15%/sqrt([MeV])
- 中性子捕獲による後発事象
  - Gd 入り液体シンチレータ (DayaBay, Double Chooz, RENO ...)
  - 技術手法は確立されている
- PSD and/or Cherenkov による粒子識別(γ/n)
- •新ビームライン,新実験棟
  - 建設から1.5年でデータ取得開始へ
- Reasonable cost (~2億/detector,計4億)



- •信号事象と主要なニュートリノ由来の背景事象 (intrinsic ve) はエネルギー分布の違いを用いて抽出できる
- LSNDにより示唆されたパラメータ領域の殆どを5σの感 度で探索可能(5年×1MW)



| 2013 | ▶ 3月~5月: MLF実験ホール(2F)での背景事象測定         |
|------|---------------------------------------|
|      | ▶ 9月:実験プロポーザルを提出(17th J-PARC PAC)     |
| 2014 | ▶ 4月~6月:実験候補地実地での背景事象測定(MLF3F)        |
|      | ► 12月: J-PARC RCS 1 MW trial          |
| 2015 | ► 1月: Stage-1 approval                |
|      | ▶ 夏: RCS RF-PS アップグレード (1 MW 連続運転のため) |
| 2016 | ▶ 5月~6月:液シンを用いた背景事象測定 at MLF 3F       |
|      | ▶1台目検出器の財源(基盤S)                       |
| 2017 | ・技術設計書(Technical Design Report)の提出    |
| 2018 |                                       |
| 2010 | ・データ取得開始(2018年度末)                     |

| 2013 | ▶ 3月~5月: MLF実験ホール(2F)での背景事象測定                        |
|------|------------------------------------------------------|
|      | ▶ 9月:実験プロポーザルを提出(17th J-PARC PAC)                    |
| 2014 | <ul> <li>▶ 4月~6月:実験候補地実地での背景事象測定 (MLF 3F)</li> </ul> |
|      | ► 12月: J-PARC RCS 1 MW trial                         |
| 2015 | ► 1月: Stage-1 approval                               |
|      | ▶ 夏: RCS RF-PS アップグレード (1 MW 連続運転のため)                |
| 2016 | ▶ 5月~6月: 液シンを用いた背景事象測定 at MLF 3F                     |
|      | ▶ 1台目検出器の財源(基盤S)                                     |
| 2017 | ▶ 技術設計書(Technical Design Report)の提出                  |
| 2018 |                                                      |
| 2010 | ▶ データ取得開始(2018年度末)                                   |

# 実験候補地での背景事象測定

The most critical technical issue is a detailed estimate of the actual background rate at the 3rd floor of the MLF. The PAC recommends a direct measurement of this background with a small-scale prototype detector. If the background levels are as predicted (based on an extrapolation from rates measured at BL13 using a simulation), the experiment would be technically feasible and could receive stage-I approval. 17th J-PARC PAC



## 実験候補地での背景事象測定

- •標的シンチチレータ
  - 24 pieces, 計 500kg
- •2層からなるベトーシステム
  - inner and outer ベトー
  - 検出効率 > 99.9%





#### 実験候補地での背景事象測定





## Accidental BG

S. Ajimura et al, Prog. Theor. Exp. Phys. (2015) 063C01

- ・宇宙線起源の先発事象BG
  - ビーム無し時の先発事象のエネルギー領域 (親ミューオン検出による Michel-e 除去)
    液シン(NE213), Nalを用いた別測定
    6%以内で一致
- ビーム由来γ線による後発事象BG
  - 床コンクリートからのγ線
  - 検出器下に鉛ブロックを敷く事で抑止





2013 ▶ 3月~5月: MLF実験ホール(2F)での背景事象測定 ▶ 9月:実験プロポーザルを提出(17th J-PARC PAC) 2014 ► 4月~6月:実験候補地実地での背景事象測定(MLF3F) ► 12月: J-PARC RCS 1 MW trial 2015 ▶ 1月: Stage-1 approval Based on the background measurements presented, the PAC is convinced that the 20 background rates described in the proposal are achievable. The PAC recommends stage-1 status for P56. 2017 ▶ 技術設計書(Technical Design Report)の提出 2018 タ取得開始(2018年度末)

| ▶ 3月~5月: MLF実験ホール(2F)での背景事象測定                     |
|---------------------------------------------------|
| ▶ 9月:実験プロポーザルを提出(17th J-PARC PAC)                 |
| ▶ 4月~6月:実験候補地実地での背景事象測定(MLF3F)                    |
| ► 12月: J-PARC RCS 1 MW trial                      |
| ► 1月: Stage-1 approval                            |
| ▶ 夏: RCS RF-PS アップグレード (1 MW 連続運転のため)             |
| <ul> <li>5月~6月:液シンを用いた背景事象測定 at MLF 3F</li> </ul> |
| ▶ 1台目検出器の財源(基盤S)                                  |
| ・技術設計書(Technical Design Report)の提出                |
|                                                   |
| ・データ取得開始(2018年度末)                                 |
|                                                   |

## 候補地での液シンを用いた測定

- 狙い
  - ビーム中にやってくる中性粒子の識別 (n/γ) - 候補地での液シン運用 (安全面での予行演習)



| 2013 | ▶ 3月~5月: MLF実験ホール(2F)での背景事象測定       |          |  |  |  |
|------|-------------------------------------|----------|--|--|--|
|      | ▶ 9月:実験プロポーザルを提出(17th J-PARC F      | PAC)     |  |  |  |
| 2014 | ▶ 4月~6月:実験候補地実地での背景事象測定             | (MLF3F)  |  |  |  |
|      | ► 12月: J-PARC RCS 1 MW trial        |          |  |  |  |
| 2015 | ► 1月: Stage-1 approval              |          |  |  |  |
|      | ▶ 夏: RCS RF-PS アップグレード (1 MW 連続運転   | のため)     |  |  |  |
| 2016 | ▶ 5月~6月:液シンを用いた背景事象測定 at M          | ILF 3F   |  |  |  |
|      | <ul> <li>1台目検出器の財源(基盤S)</li> </ul>  | ←有効体積25ト |  |  |  |
| 2017 | ▶ 技術設計書(Technical Design Report)の提出 |          |  |  |  |
| 2018 | ▶ データ取得開始(2018年度末)                  |          |  |  |  |

ン

# Signal and BGs

|    | Contents                                         | #/50t/5yr/MW   | Notes                                                                                          |
|----|--------------------------------------------------|----------------|------------------------------------------------------------------------------------------------|
| BG | $\overline{\nu}_e$ from $\mu^-$                  | 233            | 主なBG                                                                                           |
|    | $v_e + {}^{12}C \rightarrow e^- + {}^{12}N_{gs}$ | 15             |                                                                                                |
|    | ビーム高速中性子<br>(からの Michel-e)                       | <13 (90% C.L.) | 実測定に基づく                                                                                        |
|    | 宇宙線高速中性子                                         | 33             | 実測定に基づく<br>1/100 除去を仮定                                                                         |
|    | Accidental                                       | 32             | 実測定に基づく                                                                                        |
| 信号 |                                                  | 470            | $\Delta m^2 = 2.5 \text{ eV}^2, \ \sin^2 2\theta = 0.003$ (JSNS <sup>2</sup> best sensitivity) |
|    | $\nu_{\mu} \rightarrow \nu_{e}$                  | 336            | $\Delta m^2 = 1.2 \text{ eV}^2, \ \sin^2 2\theta = 0.003$ (LSND best fit)                      |

# TDR提出に向けて

- 検出器 R&D
  - ▶ 良いエネルギー分解能
  - ▶ 良い高速中性子除去能力
- ➡ Pulse Shape Discrimination (PSD) and/or Cherenkov
- PSD
  - √<sup>241</sup>Am<sup>9</sup>Be 線源 → JSNS<sup>2</sup> 領域での性能見積





## **Cherenkov** による粒子識別

- 目的
  - n/γ 粒子識別 (PSDとのハイブリッド)
  - 電磁シャワー進行方向の再構成
- 開発要素
  - 液体シンチレータ発光によるバックグラウンド (エネルギー分解能,PSDの観点からは、シンチ光量は多い方が望ましい)
  - PMTによる有限の photo-coverage (コストの観点からはなるべく PMTの数は減らしたい)



※低発光液体シンチレータと100% coverageでの概念図(MC)

液体シンチレータの特性

• 濃度 vs 光量



• 濃度 vs 時定数

## **Cherenkov** による粒子識別



arXiv:1601.01046

## **Cherenkov** による粒子識別

•飛跡方向を仮定して、観測された波形情報を評価する

50

0



raw hit time (Cherenkov) raw hit time (scintillation) observed/generated template for true direction



## 高い高速中性子除去能力を得るために

- ・

  波形評価時に
   Cherenkov
   に加えて
   PSD
   を加味するこ
   とで、
   n/γの分離はさらに良くなる
- ➡ Cherenkov, PSD は共に波形情報が重要
- 高精度, 高信頼度な waveform digitizer が必要
- E14 KOTO実験の500MHz FADC + trigger board?
- CAEN 500MHz FADC?

#### 個人的なエレキの構想

- KOTOでエレキもやってた → KOTOのエレキの転用
  - チャンネル数:~250(JSNS<sup>2</sup>) < ~3000(KOTO)
  - 500MHz, 12bit
  - L1 トリガー:共にエネルギー和トリガー+ベトー
    - ・さらに、エネルギー和の一部ビットをヒット数(或いはパターン)に 割り当て→total E vs #hitPMT
  - 必要に応じてL2も(ハードウェア)





#### Summary

- J-PARC MLF でのステライルニュートリノ探索
  - RCS1MW のビームを用いた大強度ニュートリノ源
  - LSND実験の直接的な追検証
  - Flash ADC, Gd入り液シンなど比較的新しい技術を用 いた検出器
- •高い高速中性子除去能力を備えた検出器
  - PSD, Cherenkov いずれも波形情報が重要