J－PARC／MLFにおける
 ステライルニュートリノ探索

10／13／2016，計測システム研究会＠J－PARC岩井 摸人，ミシガン大学

ステライルニュートリノ探索

－1988年以来，既知のニュートリノ振動では説明できない，混沌 とした実験事実がある。

実験	ニュートリノ源	信号	有意性	E／L
LSND	μ decay at rest	$\overline{\mathrm{v}}_{\mathrm{u}} \rightarrow \overline{\mathrm{v}}_{\mathrm{e}}$	3.8σ	$40 \mathrm{MeV} / 30 \mathrm{~m}$
MiniBooNE	π decay in flight	$v_{u} \rightarrow v_{e}$	3.4σ	$800 \mathrm{MeV} / 600 \mathrm{~m}$
		$\bar{v}_{\mu} \rightarrow \bar{v}_{e}$	2.8σ	
		comb．	3.80	
Gallium／SAGE	e capture	$v_{e} \rightarrow v_{x}$	2.70	＜3MeV／10m
原子炉	β 崩壞	$\overline{\mathrm{v}}_{\mathrm{e}} \rightarrow \overline{\mathrm{v}}_{\mathrm{x}}$	3.0 б	$3 \mathrm{MeV}, 10-100 \mathrm{~m}$

LSND
Phys．Rev．D 64， 112007 （2001）

- $\mathrm{O}\left(1 \mathrm{eV}^{2}\right)$ のニュートリノ振動？？
- LEP実験より，質量Mz／2以下の弱い相互作用（Zとカップル）す るニュートリノは3種類のみ
\Rightarrow 弱い相互作用をしないニュートリノ？？
$\sqrt{ }$ 事実なのか，間違いなのか，完全決着（50以上）を目指す！

J-PARC E56 JSNS² at MLF

MLFの中性子源：RCS＋HG target in MLF

－RCSの大強度陽子ビームによる世界クラスの大強度中性子源
－ビームエネルギー： 3 GeV
+ニュートリノ源!!

- ビームパワー：設計値： 1 MW ，連続利用運転： 500 kW
- ビームから $1 \mu \mathrm{~S}$ 以降を選ぶことにより，静止ミューオン崩壊由来のニュートリノのみを観測することができる

測定原理

－シグナル： $\bar{V}_{\mu}\left(\rightarrow \bar{V}_{4}\right) \rightarrow \bar{V}_{e}$

- ニュートリノ源：v_{μ} from $\pi^{+} \rightarrow \mu^{+} \rightarrow e^{+}$decay at rest
- intrinsic $\bar{V}_{\mathrm{e}}: \pi^{-} \rightarrow \mu^{-} \rightarrow \mathrm{e}^{-}$チェーンは π / μ 捕獲により 3 桁抑制
- 逆 β 崩壊（IBD：$v_{e}+p \rightarrow e^{+}+n$ ）の遅延同時計測
- 断面積，エネルギー再構成がよく理解されている
- 後発事象は，Gdによる中性子捕獲からの（複数の） ）線とし て観測
－LSNDの直接的な追検証が可能

－ベースライン： 24 m

fiducial： 50 tonnes in total

- 有効体積：50トン
- エネルギー分解能：$\sigma_{E} / E[\%] \sim 15 \% / s q r t([M e V])$
- 中性子捕獲による後発事象
- Gd 入り液体シンチレータ（DayaBay，Double Chooz，RENO ．．．）
- 技術手法は確立されている
- PSD and／or Cherenkov による粒子識別（ Y / n ）
- 新ビームな，新実験棟
- 建設から1．5年でデータ取得開始へ
- Reasonable cost（～2 億／detector，計 4 億）

信号抽出と感度

－信号事象と主要なニュートリノ由来の背景事象（intrinsic v_{e} ）はエネルギー分布の違いを用いて抽出できる
－LSNDにより示唆されたパラメータ領域の殆どを50 の感度で探索可能（ 5 年 $\times 1 \mathrm{MW}$ ）

Timeline

2013	－ 3 月～5月：MLF実験ホール（2F）での背景事象測定
	－9月：実験プロポーザルを提出（17th J－PARC PAC）
2014	－ 4 月～6月：実験候補地実地での背景事象測定（MLF 3F）
	－12月：J－PARC RCS 1 MW trial
2015	－1月：Stage－1 approval
	－夏：RCS RF－PS アップグレード（1 MW 連続運転のため）
2016	－5月～6月：液シンを用いた背景事象測定 at MLF 3F
	－1台目検出器の財源（基盤S ）
2017	－技術設計書（Technical Design Report）の提出
2018	－データ取得開始（2018年度末）

Timeline

2013	－ 3 月～5月：MLF実験ホール（2F）での背景事象測定
	－ 9 月：実験プロポーザルを提出（17th J－PARC PAC）
2014	－ 4 月～6月：実験候補地実地での背景事象測定（MLF 3F）
	－12月：J－PARC RCS 1 MW trial
2015	－1月：Stage－1 approval
	－夏：RCS RF－PS アップグレード（1 MW 連続運転のため）
2016	－5月～6月：液シンを用いた背景事象測定 at MLF 3F
	－1台目検出器の財源（基盤S）
2017	－技術設計書（Technical Design Report）の提出
2018	－データ取得開始（2018年度末）

実験候補地での背景事象測定

The most critical technical issue is a detailed estimate of the actual background rate at the 3rd floor of the MLF．The PAC recommends a direct measurement of this background with a small－scale prototype detector．If the background levels are as predicted（based on an extrapolation from rates measured at BL13 using a
simulation），the experiment would be technically feasible and could receive stage－I approval．

17th J－PARC PAC
compare beam ON／OFF

| | beam－on |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Michel－e
 by beam fast
 neutron | |

実験候補地での背景事象測定

- 標的シンチチレータ
- 24 pieces，計 500 kg
- 2層からなるベトーシステム
－inner and outer ベトー
－検出効率＞99．9\％

実験候補地での背景事象測定

背景事象測定

on bunch hit

Accidental BG

- 宇宙線起源の先発事象BG
- ビーム無し時の先発事象のエネルギー領域 （親ミューオン検出によるMichel－e 除去）
- 液シン（NE213），Nalを用いた別測定
- 6\％以内で一致
- ビーム由来 γ 線による後発事象BG
- 床コンクリートからの γ 線
- 検出器下に鉛ブロックを敷く事で抑止

MLF building cross－section
Concrete floor
Proton
beam

The remote maintenance
room of Hg target（Air）

Timeline

```
2013 - 3月~5月:MLF実験ホール(2F)での背景事象測定
    - 9月:実験プロポーザルを提出(17th J-PARC PAC)
2014 - 4月~6月:実験候補地実地での背景事象測定 (MLF 3F)
    - 12月: J-PARC RCS 1 MW trial
2015 - 1月:Stage-1 approval
```

Based on the background measurements presented，the PAC is convinced that the background rates described in the proposal are achievable．The PAC recommends stage－1 status for P56．

2017 •技術設計書（Technical Design Report）の提出
2018
－データ取得開始（2018年度末）

Timeline

2013	－ 3 月～5月：MLF 実験ホール（2F）での背景事象測定
	－ 9 月：実験プロポーザルを提出（17th J－PARC PAC）
2014	－4月～6月：実験候補地実地での背景事象測定（MLF 3F）
	－12月：J－PARC RCS 1 MW trial
2015	－ 1 月：Stage－1 approval
	－夏：RCS RF－PS アップグレード（1 MW 連続運転のため）
2016	－5月～6月：液シンを用いた背景事象測定 at MLF 3F
	－1台目検出器の財源（基盤S ）
2017	－技術設計書（Technical Design Report）の提出
2018	－データ取得開始（2018年度末）

候補地での液シンを用いた測定

- 狙い
- ビーム中にやってくる中性粒子の識別（ $n / \gamma)$
- 候補地での液シン運用（安全面での予行演習）

Timeline

```
2013 • 3 月~5月:MLF実験ホール(2F)での背景事象測定
    - 9月:実験プロポーザルを提出(17th J-PARC PAC)
2014 • 4 月~6月:実験候補地実地での背景事象測定 (MLF 3F)
    - 12月: J-PARC RCS 1 MW trial
2015 - 1月: Stage-1 approval
    •夏: RCS RF-PS アップグレード (1 MW 連続運転のため)
2016 - 5月~6月:液シンを用いた背景事象測定at MLF 3F
    - 1台目検出器の財源(基盤 S )
        \leftarrow有効体積25トン
2 0 1 7
- 技術設計書（Technical Design Report）の提出
- データ取得開始（2018年度末）
```


Signal and BGs

	Contents	\＃／50t／5yr／MW	Notes
BG	$\bar{v}_{\text {e }}$ from μ^{-}	233	主なBG
	$\mathrm{V}_{\mathrm{e}}+{ }^{12} \mathrm{C} \rightarrow \mathrm{e}^{-}+{ }^{12} \mathrm{Ngs}^{\text {g }}$	15	
	ビーム高速中性子 （からの Michel－e）	＜13（90\％C．L．）	実測定に基づく
	宇宙線高速中性子	33	実測定に基づく 1／100除去を仮定
	Accidental	32	実測定に基づく
信号	$\bar{v}_{\mu} \rightarrow \bar{v}_{e}$	470	$\Delta m^{2}=2.5 \mathrm{eV}^{2}, \sin ^{2} 2 \theta=0.003$ （JSNS ${ }^{2}$ best sensitivity）
		336	$\begin{gathered} \Delta m^{2}=1.2 \mathrm{eV}^{2}, \sin ^{2} 2 \theta=0.003 \\ \text { (LSND best fit) } \end{gathered}$

TDR提出に向けて

- 検出器 R\＆D
- 良いエネルギー分解能
- 良い高速中性子除去能力

\Rightarrow Pulse Shape Discrimination（PSD）and／or Cherenkov
－PSD
$\checkmark{ }^{241} \mathrm{Am}^{9} \mathrm{Be}$ 線源 \rightarrow JSNS ${ }^{2}$ 領域での性能見積

Cherenkov による粒子識別

- 目的
- n／ Y 粒子識別（PSDとのハイブリツド）
- 電磁シャワ—進行方向の再構成
- 開発要素
- 液体シンチレータ発光によるバックグラウンド （エネルギー分解能，PSDの観点からは，シンチ光量は多い方が望ましい）
－PMTによる有限の photo－coverage
（コストの観点からはなるべくPMTの数は減らしたい）
observed

Cherenkov

Scintillation

※低発光液体シンチレータと100\％coverageでの概念図（MC）

液体シンチレータの特性

- 濃度 Vs 光量
- 濃度 vs 時定数

Light yield ratio of each PPO concentration to PPO3g／L

Mean waveform around 100P．E．s of each PPO concentration

Cherenkov による粒子識別

Cherenkov による粒子識別

－飛跡方向を仮定して，観測された波形情報を評価する

raw hit time（Cherenkov）
raw hit time（scintillation）
observed／generated
template for true direction

高い高速中性子除去能力を得るために

－波形評価時にCherenkovに加えてPSDを加味するこ とで，n／ Y の分離はさらに良くなる
\Rightarrow Cherenkov，PSD は共に波形情報が重要

- 高精度，高信頼度な waveform digitizer が必要
- E14 KOTO実験の500MHz FADC＋trigger board？
－CAEN 500MHz FADC？

個人的なエレキの構想

- KOTOでエレキもやってた \rightarrow KOTOのエレキの転用
- チャンネル数：～250（JSNS²）＜～3000（KOTO）
－500MHz，12bit
- L1トリガー：共にエネルギー和トリガー＋ベトー
- さらに，エネルギー和の一部ビットをヒット数（或いはパターン）に割り当て \rightarrow total E vs \＃hitPMT
－必要に応じてL2も（ハードウェア）

Summary

- J－PARC MLF でのステライルニュートリノ探索
- RCS1MW のビームを用いた大強度ニュートリノ源
- LSND実験の直接的な追検証
- Flash ADC，Gd入り液シンなど比較的新しい技術を用 いた検出器
- 高い高速中性子除去能力を備えた検出器
- PSD，Cherenkov いずれも波形情報が重要

