

北海道大学における ダイヤモンド放射線検出器開発の現状

北海道大学金子純一

2016年10月13日 計測システム研究会@KEK東海

共同研究者の皆様 (敬称略)

嶋岡、坪田、新名、小泉(均) 北大 渡邊、茶谷原、梅澤、加藤、鹿田 AIST 磯部、長壁 NIFS 有川、中井、白神、畦地 阪大 理研 佐藤 落合 JAEA 物材機構 小泉(聡)、大谷、リャオ 日立製作所桑原、佐々木、上野、田所 青柳 SPring-8 田中 KEK 阪府大 山本 他

ダイヤモンド放射線検出器の特長

- ・
 か射線耐性(> 10¹⁵ neutron / cm²、Siの3桁以上)
- •高温動作(>300℃以上)
- ¹²C(n, α)⁹Be反応による高速中性子計測
- •可視光不感
- •低X•γ線感度
- ・検出器サイズが小さい(DT中性子スペクトロメータとし て)
- •高速応答性
- 耐腐食性

過酷環境で動作可能な放射線検出器として期待 核融合プラズマ診断への応用

耐放射線・高温動作半導体としての ダイヤモンド、SiC、Siの比較

材料	ダイヤモンド	SiC	Si
平均原子番号	6	10	14
禁制帯幅(eV)	5.47	3.27	1.1
絶縁破壊電界	>10	3.0	0.3
(MV/cm)			
ヌープ硬度	8000	3000	1150
(kgf/mm ²)			
動作温度(℃)	>500	300	200*
γ線耐性	Ô	0	×
中性子耐性	Ô	Δ	×

* SOI (Silicon On Insulator)技術

核融合プラズマ診断応用中性子エネルギースペクトロメータ

核融合装置断面図

 $D + T \rightarrow He + n(14.1 MeV)$ $\Delta E(keV) = 177 \sqrt{T_i(keV)}$

かりレベルのロシア要天然タイヤモント 放射線検出器DT中性子応答関数測定 例[1] 上記性能を持つ天然ダイヤモンド は2例のみ。

<u>ITERにおける要求性能</u>

- •¹²C(n, α)⁹Be に対するエネルギー分解能 2%台
- •150℃で動作
- ・高中性子フラックス下(>10⁹ neutron /cm²・s)、10kcps以上連続動作可能
- ・検出効率 :1 x 10⁻³ count/(neutron/cm²) ⇒ 素子サイズ : 約5mm x 5mm x 0.15mm

[1] A. V. Krasilnikov, J. H. Kaneko, et al., Rev. Sci. Instrum., 68 (4) (1996)1720.

単結晶CVDダイヤモンド検出器による DT中性子応答関数測定例

Element Six社製エレクトロニクスグレード 単結晶CVDダイヤモンド[2]

サイズ:4 x 4 x 0.5 mm³ N < 5 ppb B < 1 ppb

3 10⁴ (a) 2.5 10⁴ $\Delta E/E=2.5\%$ (検出器固有分解能) 2 10⁴ ntensity [counts] ¹²C(n,α)⁹Be 1.5 10⁴ elastic 1 10⁴ ¹²C(n,n')3α 5 10³ 0 2 6 10 E [MeV]

ダイヤモンド基板上にCVDダイヤモンド を合成。レーザー切断、機械研磨

> Element Six 社製単結晶CVDダイヤモンドによる DT中性子応答関数 [3]

[2] http://www.e6cvd.com/cvd/page.jsp?pageid=417

[3]C. Cazzaniga, M. Nocente, M. Rebai, M. Tardocchi, P. Calvani et al. Review of Scientific instruments 85, 11E101 (2014)

電荷捕獲の無い結晶が求められる理由

電荷捕獲がわずかでもある場合、高計数率時には瞬く間 に検出器が動作不能に。極めて不純物・欠陥の少ない単 結晶が必要。ダイヤモンドは特にバンドギャップが広いの で必須。

電荷捕獲の無い結晶が求められる理由

電荷捕獲がわずかでもある場合、高計数率時には瞬く間 に検出器が動作不能に。極めて不純物・欠陥の少ない単 結晶が必要。ダイヤモンドは特にバンドギャップが広いの で必須。

4年前の北大製ダイヤモンド…電子に対して3%の電荷捕獲

電荷収集効率の算出には $\varepsilon_{\text{Diamond}}$ = 13.1 eV, ε_{Si} = 3.62 eVを使用。

試 料	北海道大学(試料3つの平均値)		エレメントシックス社(試料8つの平均)	
	Hole	Electron	Hole	Electron
電荷収集効率(%)	99.5 ± 0.8	97.1 ± 1.4	96.6 ± 1.9	95.6 ± 2.3
エネルギー分解能(%)	0.84 ± 0.4	1.1 ± 0.1	1~2%	

結晶の不完全性は高温動作を大きく制限*

* M. Tsubota Nuclear Instruments and Methods in Physics Research A 789 (2015) 50–56.

研究目的

核融合プラズマ診断用人エダイヤモンド放射線検出器開発の

ー環として、電荷捕獲準位低減を試みる。

具体的には合成時の大気 混入の低減、低メタン濃度合成条件の探索を行う。合成結晶から製作した検出器の電荷キャリア輸送特性評価、14MeV中性子応答関数測定を行う。

単結晶ダイヤモンド合成と解決すべき課題

マイクロ波プラズマCVD法により、ダイヤモンド単結晶基板上に 結晶をホモエピタキシャル成長させ合成

合成上の課題点と対策

- ・ 成長層の応力割れ 防止 → Ⅱa型基板の使用
- ・ 異常成長の抑制 ⇒ オフ角制御処理
- ・ 基板の再利用

- → ゴa空墨板の使用
 ⇒ オフ角制御処理
 → ほぼ解決済み
- ⇒ ダイレクトウェハ一法

電荷キャリア輸送特性の向上 ⇒ 不純物低減 (電荷捕獲準位の除去) 合成条件の最適化

オフ角制御基板による異常成長の抑制*

結晶の成長面となる(001)面を〈110〉方向に約3度傾けて研磨し、ステップ数を増加

* Norio Tokuda et al. Japanese Jouranal of Applied Physics Vol 46. pp1469-1470

ダイレクトウェハー法*による自立膜の製作

図中で基板層のエッチングプロセスは省略

* Y.Mokuno et al. Diamond and Related Materials 17 (2008) 415-418

イオン注入の影響?

合成途中に発生する構造欠陥 の抑制にも有効

トップクラスのCCE、エネルギー分解能を達成

電荷収集効率(CCE)の算出には $\varepsilon_{\text{Diamond}}$ = 13.1 eV, ε_{Si} = 3.62 eVを使用。

14MeV中性子に対する応答関数評価

14MeV中性子に対する世界最高のエネルギー分解能達成

[1] A. V. Krasilnikov, J. H. Kaneko, M. Isobe, F. Maekawa, T. Nishitani Review of Scientific Instruments 68, 4 (1997)