Development of a counting-type neutron imaging detector for energyresolved imaging at J-PARC/MLF

Joe Parker CROSS-Tokai BL22 Group

計測システム研究会@J-PARC 13 October 2016

RADEN/BL22 and µNID development members

JAEA/J-PARC Center Takenao Shinohara Tetsuya Kai Kenichi Oikawa (BL10) Masahide Harada (BL10) Takeshi Nakatani Mariko Segawa Kosuke Hiroi Yuhua Su **CROSS-Tokai** Hirotoshi Hayashida Joe Parker (µNID Lead Developer) Yoshihiro Matsumoto Shuoyuan Zhang Nagoya University Yoshiaki Kiyanagi

RADEN/BL22 – Neutron imaging instrument at the MLF

World's first instrument dedicated to energy-resolved neutron imaging using pulsed neutrons!

- World-class, pioneering instrument for pulsed-neutron imaging
- Leading facility for conventional radiography in Japan
- Commissioning from Nov. 2014, user program from April 2015

First images from RADEN (7 Nov 2014)

Energy-resolved neutron imaging

Energy-dependent neutron transmission

- Energy-dependence → quantitative information on macroscopic distribution of microscopic quantities
- Pulsed neutrons → wide energy range, accurate energy determination by time-of-flight
- Requires detectors with:
 - Spatial resolution < 1 mm
 - Time resolution < 1 µs
 - Count rate > 1 Mcps
 - Strong background rejection

RADEN/BL22 – Neutron imaging instrument at the MLF

Properties of RADEN

Conventional radiography/pulsed-neutron imaging	Large beam size (up to 30x30 cm ²)
High flux (2.6x10 ⁷ n/s/cm ² @ <0.5eV)	Variable L/D (up to 7500)
Wide bandwidth (~9Å, $\Delta \lambda / \lambda < 0.2\%$)	Large experimental area

RADEN computer system

- Computer control of beam line components, sample stages, and detectors using IROHA2 (automated measurements)
- Large data storage capacity (24TB SSD primary, 100TB secondary)
- Fibre channel network (8 Gb/s) for fast data transfer
- GPGPU cluster (12 CPUs, 24 GPGPUs) for data analysis

Detectors available at RADEN

Camera type

Andor iKon-L

- Cooled CCD
- 300µm
- No TOF
- Automated system for CT

Counting type

nGEM

- Micro-pattern w/ ¹⁰B (10% eff.)
 FOV: 10 × 10 cm²
- $\Delta x=1mm$, $\Delta t=15ns$, < 1 Mcps

Lita12

- Li-glass scint. (40% eff.)
- FOV: $5 \times 5 \text{ cm}^2$
- $\Delta x=3mm$, $\Delta t=40ns$, 6 Mcps

Neutron Color I.I.

- High-resolution (200 μm)
- High-speed (10k, 30k, 100k fps)

μNID

- Micro-pattern
- ³He (18% eff.)
- FOV: 10 × 10 cm²
- $\Delta x=0.3$ mm,

 Δ t=0.6 μ s, < 1 Mcps

Current performance of countingtype detectors at RADEN

µPIC-based Neutron Imaging Detector (µNID)

µPIC-based neutron imaging detector (µNID)

Neutron detection via ³He

32.8 cm

9.0 cm

µPIC

- 3-dimensional tracking of decay pattern
- Energy via time-over-threshold (TOT)
- Compact ASIC+FPGA data
 encoder
 - Good spatial resolution, strong background rejection, high data rates possible

Digital encoder with time-over-threshold (TOT)

µPIC-based neutron imaging detector

Network

DAQ control

Monitoring

Power

• Data transfer via Ethernet

µNID performance

- Strong gamma rejection using TOT information
- Template fit for position analysis

µNID performance characteristics

Area	10 x 10 cm ²
Spatial res.	0.3 mm
Time res.	0.6 µs
∆tof/tof	< 0.07% @18m
γ -sensitivity	< 10 ⁻¹²
Efficiency	Up to 26%
Count rate	0.6 Mcps

Image data taken at NOBORU in Feb. 2011

Development of µNID

- Objectives:
 - Improve count rate and spatial resolution
 - Improve data analysis; reduce processing time
 - Integration into RADEN control system
- Count rate
 - Throughput of data encoder modules
 - Drift velocity, stopping power of filling gas
 - Readout geometry
- Spatial resolution
 - Electron diffusion, stopping power of filling gas
 - Readout strip pitch
- Improvement of count rate and data analysis is most pressing

Data encoder

- FPGA-based encoder modules
 - CMOS ASICS
 - Spartan6 FPGA
 - Ethernet transfer (SiTCP)
 - 128 ch/encoder (4 encoders total)
- Original encoder throughput limited by 100BASE-T Ethernet transfer
- Upgrades
 - Gigabit Ethernet PHY (1st revision)
 - On-board DDR3 memory (2nd revision, not yet tested)

Originally developed by Kyoto U. and KEK (Open-it)

Gas optimization

- Change to CF₄-based mixture
 - Increased drift velocity (count rate)
 - Decreased electron diffusion (spatial resolution)
 - Increased stopping power (both)

	Previous gas	New gas
Mixture	Ar-C ₂ H ₆ - ³ He (67:7:30 @ 2atm)	CF ₄ -iC ₄ H ₁₀ - ³ He (45:5:50 @ 2atm)
Drift velocity	23 µm/ns	58 µm/ns
Diffusion	275 µm/cm ^{1/2}	80 µm/cm ^{1/2}
Efficiency @25.3meV	18%	26%
Proton-triton track length	8 mm	5 mm

Gas characteristics simulated with MAGBOLTZ, GEANT4

Rate testing at RADEN

- Control incident intensity using B₄C slits
- Testing of
 - rate capacity of hardware
 - rate linearity of detector

Rate testing at RADEN

- Test of revised encoders with GbE
- Ar-Ethane gas mixture
- Compared with original encoder
 - Rate capacity increased by more than factor of 6
- Mostly linear up to more than 3 Mcps

Rate testing at RADEN

Count rate (Mcps)

2

0

0

1000

2000

Slit area (mm2)

3000

4000

- Test of CF₄-based gas mixture
- Encoders with GbE
- Rate capacity over 8 Mcps
- Nearly factor of 2 increase over Ar-based gas mixture

Neutron rates vs slit area

Spatial resolution with CF₄

- Image of Gd test pattern
- L/D: 5000
- Exposure time: 1.5 hours
- 16% contrast at 2.5 lp/mm (200µm line width)
- Improvement over Ar-Ethane mixture

Bin size: 40 x 40 μm^2

Remaining issues

- Data analysis: performance of event clustering
 - Event 'pile-up' at rates above 100~300 kcps
 - Developing new algorithm
- Working with software company to improve speed and ease-of-use of analysis software

Efficiency of analysis determined by comparing numbers of raw hits and reconstructed neutron events

Other ongoing development

- New µPIC readout geometry
 - Additional strip plane at 45° to x,y strips
 - Aid in reconstruction of simultaneous events
 - Now testing at Kyoto U.
- Reduced strip pitch
 - Manufactured using MEMS (structures down to 10µm)
 - µPIC with 280, 215µm pitches
 - Performed preliminary testing at RADEN

First on-beam test of MEMS µPIC at RADEN

MEMS µPIC test board

- No signal measured on 280µm section (gain too low)
- Signal confirmed on 215µm section
- Further testing to study gain stability, imaging capability

µNID with Boron converter

µNID with Boron converter

- ¹⁰B-coated drift cathode (t=1µm)
- 3-axis µPIC
- Encoder with on-board memory
- CF₄-based gas at 2 atm
- On-beam test at RADEN early next year

Expected performance		
Efficiency@25.3meV	3~5%	
Time resolution	10 ns	
Spatial resolution	200~400 µm	
Peak count rate	20~30 Mcps	

Current and projected performance

Summary

- Development of µNID detector is proceeding
 - Increased rate capacity to 8 Mcps through hardware upgrades, optimization of gas mixture
 - Need to adapt analysis algorithms to higher rate, new gas characteristics
 - Testing of new µPIC readout boards for increased rate, higher spatial resolution has begun
 - Starting development of faster off-line data processing software
- µNID with Boron converter
 - Expect greatly improved rate (20~30 Mcps) and similar spatial resolution thanks to smaller event size
 - Will perform on-beam test at RADEN in 2016B