|4 Oct., 20|6 計測システム研究会20|6

ハドロンビーム環境下における 超伝導X線検出器の性能評価

岡田信二 (理研) for HEATES / J-PARC E62 collaborations

Collaboration list

HEATES (J-PARC E62) collaboration High-resolution Exotic Atom x-ray spectroscopy with TES

M. Bazzi^a, D.A. Bennett^b, C. Berucci^c, D. Bosnar^d, C. Curceanu^a, W.B. Doriese^b,
J.W. Fowler^b, H. Fujioka^e, C. Guaraldo^a, F. Parnefjord Gustafsson^f, T. Hashimoto^g,
R.S. Hayano^{h*}, J.P. Hays-Wehle^b, G.C. Hilton^b, T. Hiraiwaⁱ, M. Iio^j, M. Iliescu^a,
S. Ishimoto^j, K. Itahashi^g, M. Iwasaki^{g,l}, Y. Ma^g, H. Noumiⁱ, G.C. O'Neil^b, H. Ohnishi^g,
S. Okada^{g†}, H. Outa^{g‡}, K. Piscicchia^a, C.D. Reintsema^b, Y. Sadaⁱ, F. Sakuma^g,
M. Sato^g, D.R. Schmidt^b, A. Scordo^a, M. Sekimoto^j, H. Shi^a, D. Sirghi^a, F. Sirghi^a,
K. Suzuki^c, D.S. Swetz^b, K. Tanida^k, H. Tatsuno^{b,i}, M. Tokuda^l, J. Uhlig^f,
J.N. Ullom^{b,m}, S. Yamadaⁿ, T. Yamazaki^h, and J. Zmeskal^c

^a Laboratori Nazionali di Frascati dell' INFN, Frascati, RM, I-00044, Italy
^b National Institute of Standards and Technology (NIST), Boulder, CO, 80303, USA
^c Stefan-Meyer-Institut für subatomare Physik, Vienna, A-1090, Austria
^d Department of Physics, University of Zagreb, Zagreb, HR-10000, Croatia
^e Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
^f Department of Chemical Physics, Lund University, Lund, 221 00, Sweden
^g RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan
^h Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan
ⁱ Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan
^j High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
^k Japan Atomic Energy Agency (JAEA), Tokai, 319-1184, Japan
^l Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
^m Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan

Nuclear physicists + TES experts + Astro-physicists (NIST , LundU) (TMU , TohokuU)

Introduction

Kaonic atom

Need high-resolution

K- - nucleus strong interaction is attractive & absorptive.
 but unknown how much attractive ?
 due to insufficient precision of K-atom data

⇒ Kaonic nuclei might exist! (Hot topic in hadron physics)

Drastic improvement in resolution

Transition-Edge-Sensor microcalorimeter

NIST's TES array system

Status of HEATES project

2012	Collaborate with astro-physics guys developing TES
2013	get started the collaboration with NIST
2014	Demonstration study (π beam) @ PSI
2015	stage-2 approval by J-PARC PAC
2016	Commissioning run (K beam) @ J-PARC
2017	J-PARC E62 physics run ?

Two performance evaluations

	(1)	(2)
location	PSI (Switzerland)	J-PARC (Japan)
beam line	πM1	K1.8BR
particle	Π-	K-
purity	~ 0.4	~ 0.3
momentum	170 MeV/c	900 MeV/c
intensity (sum of all particles)	1.4 ~ 2.8 x 10 ⁶ cps	8 x 10 ⁵ / spill
hadronic atom x-rays	π ¹² C 4-3 (6.4 keV)	K- ³ He 3-2 (6.2 keV) _{to be} K- ⁴ He 3-2 (6.4 keV) ^{measured}
science X-ray rate	~ 200 / hour	~ 200 / week

D π⁻ beam

π atom expt @ PSI πM1 beamline

In-beam performance

high-energy particle beam degrades resolution a bit.
 (Hit rate ~ incident beam intensity)

NOTE : Energy scale is well controlled by in-situ calibration.

A typical thermal crosstalk event

High-energy charged particles deposit energy in Si frame of TES chip
Resulting thermal-crosstalk pulses degrade the energy resolution

In-situ energy calibration with x-ray tube

useful to estimate the accuracy of energy calibration

J Low Temp Phys 184 (2016) 930-937

Successful demonstration w/ π- atom

Comparison with SDD spectrum

published very recently

on 30 Sept, 2016

PTEP

Prog. Theor. Exp. Phys. **2016**, 091D01 (9 pages) DOI: 10.1093/ptep/ptw130

Letter

First application of superconducting transition-edge sensor microcalorimeters to hadronic atom X-ray spectroscopy

HEATES Collaboration

S. Okada^{†,1,*}, D. A. Bennett², C. Curceanu³, W. B. Doriese², J. W. Fowler², J. D. Gard²,
F. P. Gustafsson⁴, T. Hashimoto¹, R. S. Hayano⁵, S. Hirenzaki⁶, J. P. Hays-Wehle²,
G. C. Hilton², N. Ikeno⁷, M. Iliescu³, S. Ishimoto⁸, K. Itahashi¹, M. Iwasaki¹, T. Koike⁹,
K. Kuwabara¹⁰, Y. Ma¹, J. Marton¹¹, H. Noda^{‡,1}, G. C. O'Neil², H. Outa¹, C. D. Reintsema²,
M. Sato¹, D. R. Schmidt², H. Shi³, K. Suzuki¹¹, T. Suzuki⁵, D. S. Swetz², H. Tatsuno^{§,8,2},
J. Uhlig⁴, J. N. Ullom², E. Widmann¹¹, S. Yamada¹⁰, J. Yamagata-Sekihara¹², and J. Zmeskal¹¹

Fit results

Fe $K_{\alpha 11}$ line (confirmation of energy calib.): —

 $6404.07 \pm 0.10(\text{stat.})^{+0.06}_{-0.04}(\text{syst.}) \text{ eV}$

⇒ good agreement with the reference value : 6464.148(2) eV [G. Holzer et al., PRA56(1997)4554]

Pionic atom lines :

$$\begin{split} E(4f \to 3d) &= 6428.39 \pm 0.13(\text{stat.}) \pm 0.09(\text{syst.}) \text{ eV} \\ E(4d \to 3p) &= 6435.76 \pm 0.30(\text{stat.})^{+0.11}_{-0.07}(\text{syst.}) \text{ eV} \\ I(4d \to 3p)/I(4f \to 3d) &= 0.30 \pm 0.03(\text{stat.}) \pm 0.02(\text{syst.}) \\ \Rightarrow \text{ comparison with EM calc?} \end{split}$$

EM values & strong-int calc.

EM calc. (T. Koike)

	Γ						
State	K.G.	Vacuum j	polarization	Nuclear	Relativistic	Strong	Total
	energy	$\alpha(Z\alpha)$	$\alpha^2(Z\alpha)$	finite size	recoil effect	interaction	energy
	(eV)	(eV)	(eV)	effect (eV)	(eV)	effect (eV)	(eV)
$\overline{3p}$	-14685.15	-11.56	-0.08	+ 0.01	-0.02	-0.78	-14697.58
3d	-14682.65	-5.39	-0.04	+ 0.0005	-0.02	$< 10^{-4}$	-14688.10
4d	-8259.04	-2.10	-0.02	+0.0003	-0.01	$< 10^{-4}$	-8261.17
4f	-8258.59	-0.72	-0.004	+0.0003	-0.01	$< 10^{-4}$	-8259.32

Strong int calc. via Seki-Matsutani potential (N. Ikeno, J. Yamagata-Sekihara, S. Hirenzaki)

 \Rightarrow Non-negligible contribution from 3p level

Electron screening effects

calc. by T. Koike

Transitions	Electron screening effect (eV)			Transition	Ξ
	Configuration	K-shell	L-shell	energy	
two e- in K-shell	N	contribution	contribution	(eV)	
	no electron	-	-	6428.78	_
$4f \rightarrow 3d$	$\bigvee 1s^1 \ 2s^2 \ 2p^1$	-0.19	-0.02	6428.57	
	$\sum 1s^2 \ 2s^2 \ 2p^1$	-0.31	-0.01	6428.46 <	
	Expe	erimental result	t (this work) :	$6428.39 \pm 0.13 \pm 0.09$	
	no electron	-	-	6436.41	agreement
$4d \rightarrow 3p$	$1s^1 \ 2s^2 \ 2p^1$	-0.25	-0.02	6436.14	within error
	$1s^2 \ 2s^2 \ 2p^1$	-0.42	-0.01	6435.98 <	
	Expe	erimental result	t (this work) :	$6435.76 \pm 0.30 \stackrel{+0.11}{_{-0.07}} \leftarrow$	

Conclusion : -

- ✓ favor two 1s electrons in the K-shell
- ✓ energy shift of measured parallel-transition is consistent with strong-int effect <u>assessed via</u> Seki-Matsutani potential

2 K⁻ beam

4-days beamtime on June, 2016

Kaon-stop tuning setup

K- stop tuning

Setup from upstream

installed TES to be located at the position expected in E62 physics run

TESs

installed Lead blocks to shield TES from direct hits of charged particles 25

Beam structure

Mn Ka spectrum

- Clear gap between Ka1 & Ka2 -> excellent resolution
- High-energy particle beam degrades resolution a bit.
- If no lead shield, $\Delta E > 10 \text{ eV}$. \Rightarrow Lead shield was quite effective.

Energy resolution vs. charged-particle hit rate

VSBinilar correlation in the two to the different sbeams

V/Promisingtoadoeverouragetal-BARCPARC

- 1. Room Room prompretive trassasses relation on
- 2. More protimal setup (spielding of c): further suppress changed particle initatete

Charged particle background

Energetic charged particle deposits several keV energy on 4 um thick Bi absorber

We understand the beam-induced background ✓ explained PSP spectron weip by Smelained by Monthensity ✓ J-PARC background level is consistent with the MC – J-PARC background level is consistent with the MC

J-PARC E62 : K-He atom exp.

To do :

- Increase the number of working pixels (now ~190/240)
- Detailed study with an X-ray tube and radioactive sources
- Combine the TES spectrometer with the liquid helium target

6. Summary

Summary

(1) π^- beam : successfully demonstrated π atom expt.

- energy resolution ~ 6 eV (FWHM @ 6 keV)
- timing resolution ~ 1 μ s (FWHM)
- ▶ accurate energy calibration : less than 0.1 eV

2 K⁻ beam : good performance at actual beamline as well

● J-PARC E62 (K-He atom x-ray) physics run in 2017 (?)