Intro Design Status Summary

ŵ

ミューオンg-2精密測定にむけた ミューオン線型加速器の開発

Masashi Otani¹ Z mososhio@post.kek.jp

N. Kawamura¹, T. Mibe¹, F. Naito¹, M. Yoshida¹K. Hasegawa², T. Ito², Y. Kondo², N. Hayashizaki³, Y. Iwashita⁴, Y. Iwata⁵, R. Kitamura⁶, N. Saito⁷

¹High Energy Accelerator Research Organization (KEK)
²Japan Energy Accelerator Research Organization (JAEA)
³Tokyo Institute of Technology
⁴Kyoto University
⁵National Institute of Radiological Sciences
⁶University of Tokyo

Oct. 2016

Muon Linac Development for precise g-2 measurment M. Otani, KEK, Japan

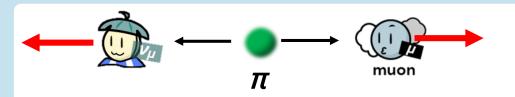
Open-It 2016

Intro Design Status

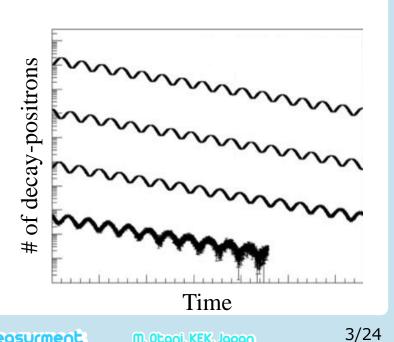
Summary

<u>Muon g-2 $[a_{\mu}=(g-2)/2]$ </u>

-	DHMZ 10 (e ⁺ e ⁻)
	-289±49 HLMNT 11 (e ⁺ e ⁻) -263±49 SM predictions
	BNL-E821 (world average) 0±63 BNL E821 ~30
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


- BNL E821 reported g-2 with a precision of 0.5 ppm in 2006.
- Discrepancy $\Delta a_{\mu} \sim 26 \times 10^{-10} \sim 3\sigma$ has not been resolved yet.
- Indicates new physics in electroweak scale $(a_{\mu}^{EW} \sim 15 \times 10^{-10})$

 $\vec{\omega} \sim -\frac{e}{m}a_{\mu}\vec{B}$


Summary

- Polarized muon beam injection. 1.
- Muon spin precession relative to 2. momentum ~ a_{μ}
- 3. High energy decay-electron \sim spin direction.

Intro Design Status

Summary

Measurements @ BNL & FNAL

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \end{bmatrix}$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c}\right) \\ negligible$$

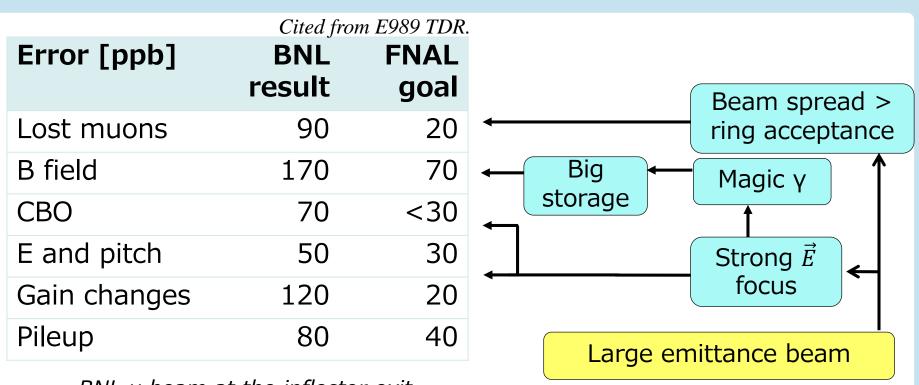
$$\vec{w} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{q}{2} \left$$

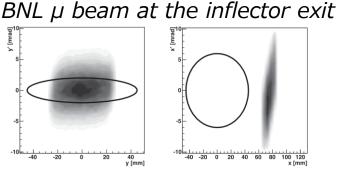
Oct. 2016

Muon Linac Development for precise g-2 measurment

M. Otani, KEK, Japan

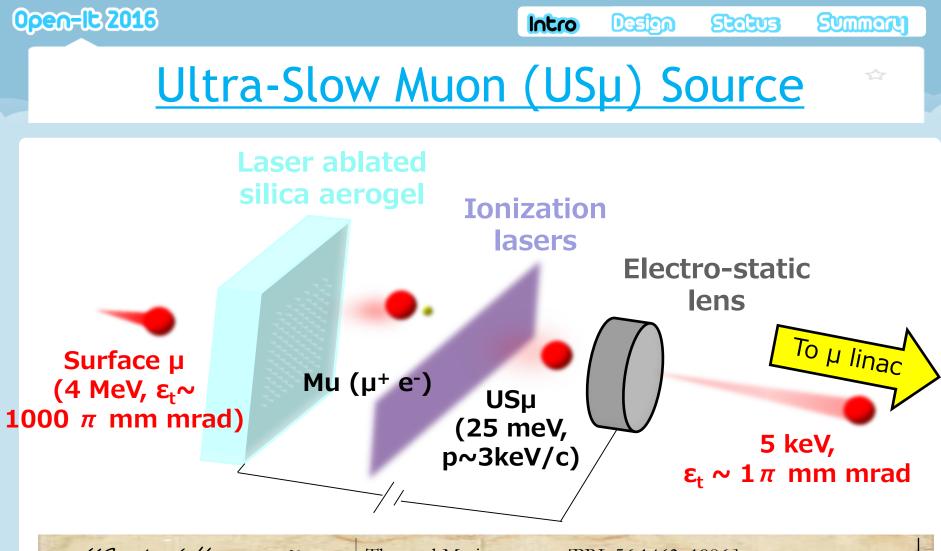
4/24


Oct. 2016


Intro Design

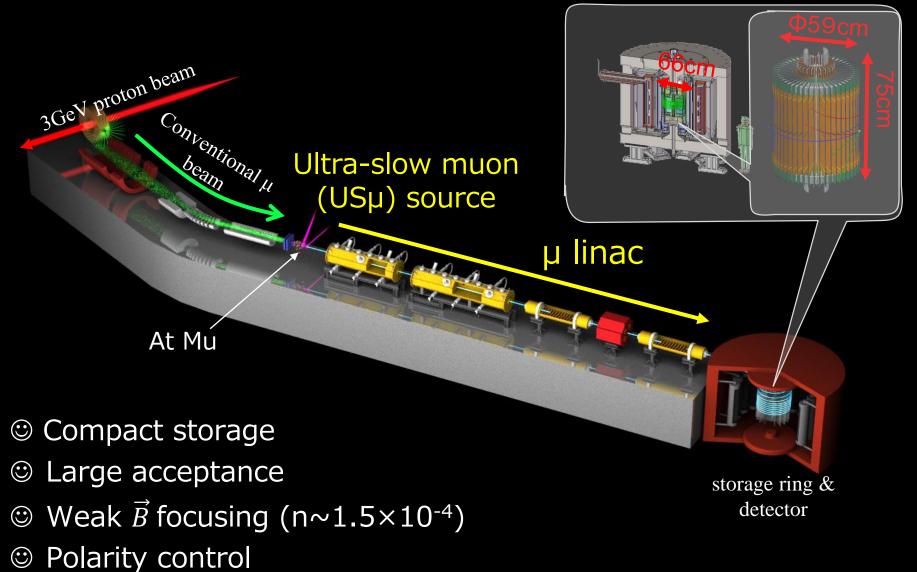
Summary

Status


Uncertainties Breakdown

Low emittance beam offers independent & precise measurement.

Cited from Phys. Rev. D. 73, 072003, 2006.


USU brief History 1986.		1986.	Thermal Mu in vacuum [PRL.56.1463. 1986.]	
Martur .		1988.	Mu resonant ionization via 1s-2s [PRL.60.101.1988]	2
		1995-2008.	USµ@ KEK & RAL[RRL.74.4811.1995, NIMB.266.335.2008.]	121
		2014.	High-efficiency Mu target [PTEP.091.C01.2014]	A.A.

Oct. 2016

Muon Linac Development for precise g-2 measurment

M. Otani, KEK, Japan

J-PARC g-2 Experiment

Goal: g-2 with 0.1 ppm and EDM up to 10⁻²¹ e⁻cm

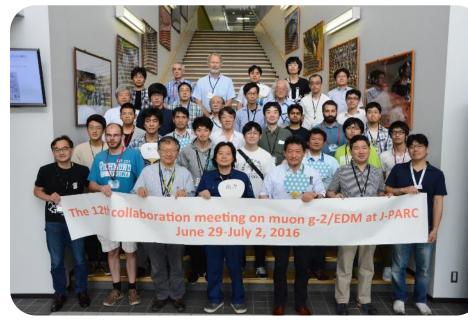
J-PARC Facility (KEK/JAEA)

Neutrino Beam To Kamioka

Main Ring 30 Gold

INAC

GeV


chrotron

Hadron Hall

Bird's eye photo in Feb. 2008

Collaboration Status

Intro

Status

Summary

Design

137 members from 9 countries, 49 institutions.

- Submitted Technical Design Report.
 - aims 0.4 ppm as stage 1.
- High priority in KEK Project Implementation Plan.
- Detailed review to move construction stage is organized in this year.

Start experiment 3 years after budget approval

Oct. 2016

Open-It 2016

Prospects for Muon Acceleration

- Fundamental Science
 - G-2/EDM
 - Fixed target exp. with high energy muon $(\mu \rightarrow \tau \text{ conversion}, \text{ dark photon})$
 - Neutrino factory, muon collider
 - (Mu \overline{Mu} conversion)
- Applied Science
 - Transmission μ microscope
 - Muon tomography

Welcome new ideas.

Oct. 2016

Muon Linac Conceptual Design

NC proton- & electron-like linac with 324 & 1296 MHz.

40 MW L-band klystron, originally developed for KEKB linac, is available.

300 MeV/c with small emittance growth

Plenty resources and experiences for 324 MHz linac @ J-PARC

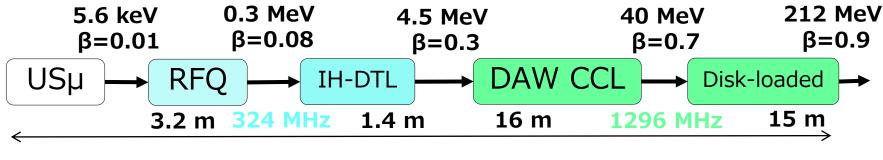
Timely manner to FNAL g-2.

Fast

• Bigger impact in LHC era.

pasj2011, TUPS158

- Cheaper is better, of course.
- Two big facilities Japan soon: J-PARC and SuperKEKB



Oct. 2016

Open-B 2013 Design Status Summary Configuration * 5.6 keV 0.3 MeV 4.5 MeV 40 MeV 212 MeV

Total ~ 40m

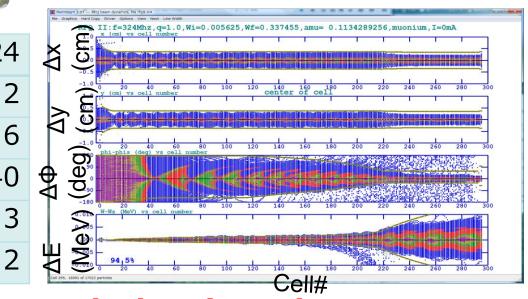
Energy [MeV]	212
Intensity [/s]	10 ⁶
Repetition [Hz]	25
Pulse length [nsec]	10
Normalized ε_t [π mm mrad]	1.5
Δp [%]	0.1

•	Several	structures	to	cover	wide	β
---	---------	------------	----	-------	------	---

- Rapid β evolution due to small mass
- Low current, low duty.
- Needs fast acceleration to avoid decay loss.

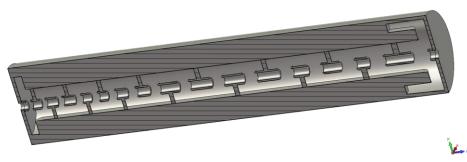
-
$$\tau_{\mu}$$
 = 2.2 usec

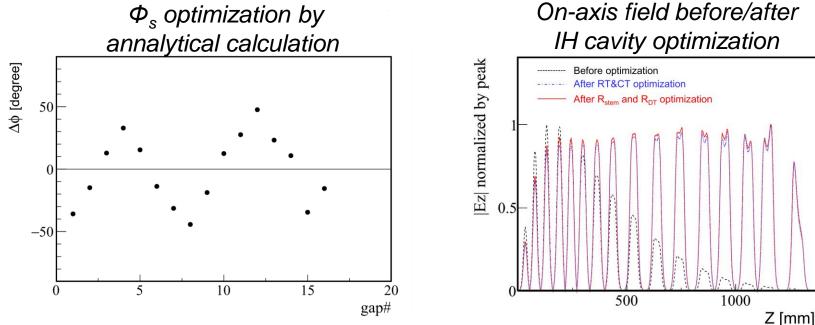
Oct. 2016



<i>f</i> [MHz]		324	
Length [m]		3.2	
Energy [keV]	In	5.6	
	Out	340	
Inter-va	9.3		
Power [kW]		4.2	

- J-PARC H⁻ spare is used.
 - Inter-vane voltage is scaled by mass
- Simulation shows good transmission to muon.

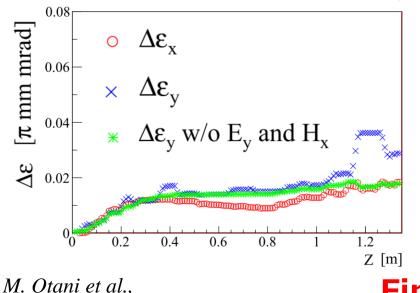

Good transmission (95%).


Oct. 2016

Interdigital H-DTL

- H-mode + alternative phase focusing (APF) for high-efficiency.
- Rapid velocity evolution

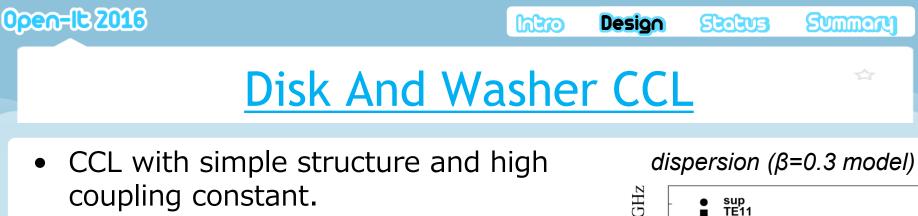
 → Optimization of Φ_s and cavity for ideal APF are essential.



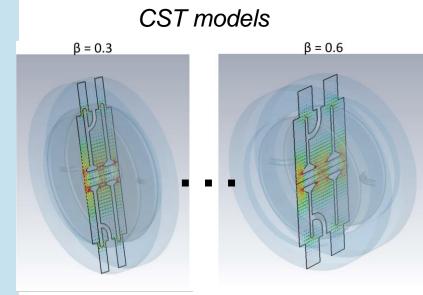
Open-It 2016

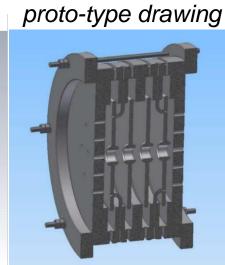
Interdigital H-DTL

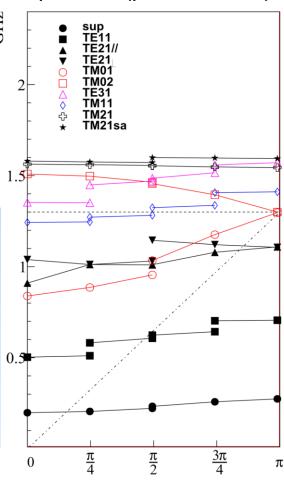
- H-mode + alternative phase focusing (APF) for high-efficiency.
- Beam dynamics evaluated by numerical calculation
 → ε growth is small enough.


Phys. Rev. AB19, 040101, 2016.

<i>f</i> [MHz]		324		
Length [m]		1.3		
Energy [MeV] & β	In	0.34 (0.08)		
	Out	4.5 (0.28)		
# of cells		16		
Φ_{s} [deg.]		-44 ~ 48		


Finish beam dynamics design.


Oct. 2016


Open=Ib 2016

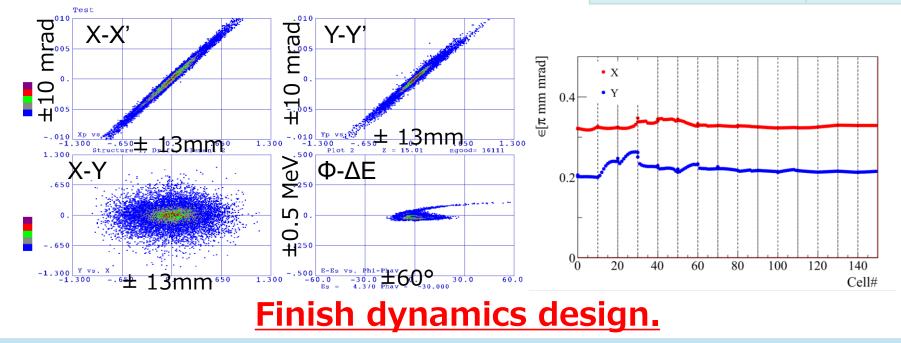
Needs design for wide β (0.3~0.7) \bullet \rightarrow semi-automatic algorithm for cavity optimization was constructed.

Summary

Under proto-type evaluation.

Oct. 2016

Open-It 2016


Intro Design Status

Summary

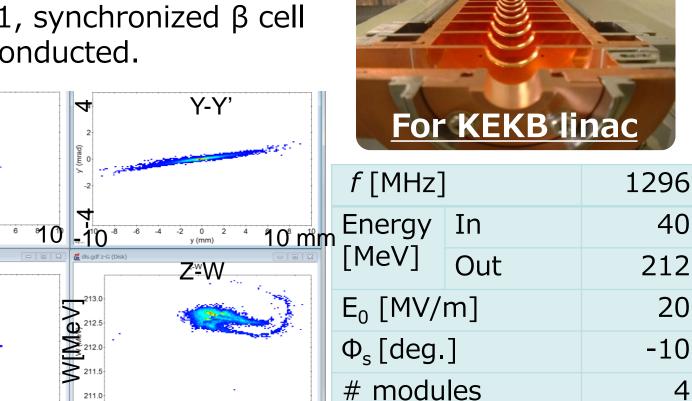
Dynamics Design

- Because DAW starts from low-β region, RF-defocusing is dominant.
- Design with $\sigma_0 < 90^\circ$ to achieve stable beam dynamics.

<i>f</i> [MHz]	1296
Length [m]	16
E ₀ [MV/m]	5.6
Φ_{s} [deg.]	-30
Power [MW]	4.5

Oct. 2016

Disk-loaded


High-gradient acceleration.

X-X'

Due to $\beta \neq 1$, synchronized β cell design is conducted.

211.0

810

Intro

Design

Status

Finish reference design.

10.270

Oct. 2016

マ

[mrad]

🕻 dls.adf x-y (Dis

10

y (mm)

Open-It 2016

Muon Linac Development for precise g-2 measurment

70.265 z (m)

4

Summary

Intro Design Status

Summary

Design Summary

	Init.	RFQ	IH	DAW	DLS
Decay survival [%]	83	81	98	96	99
Transmission [%]	87	95	99.9	99.5	99.9

Comparable to the requirement.

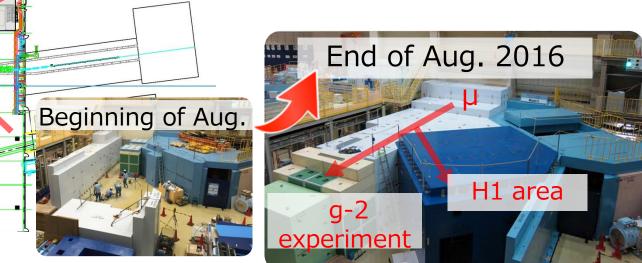
Oct. 2016

0pen-lb 2016

<u>Muon Source (New µ Beamline)</u>

ကြားစ

- Front-end solenoid was ready.
- Part of the transport line constructions is conducted in this Summer.


rotor

Status

Summary

Desion

Primary muon beam will be available soon.

Oct. 2016

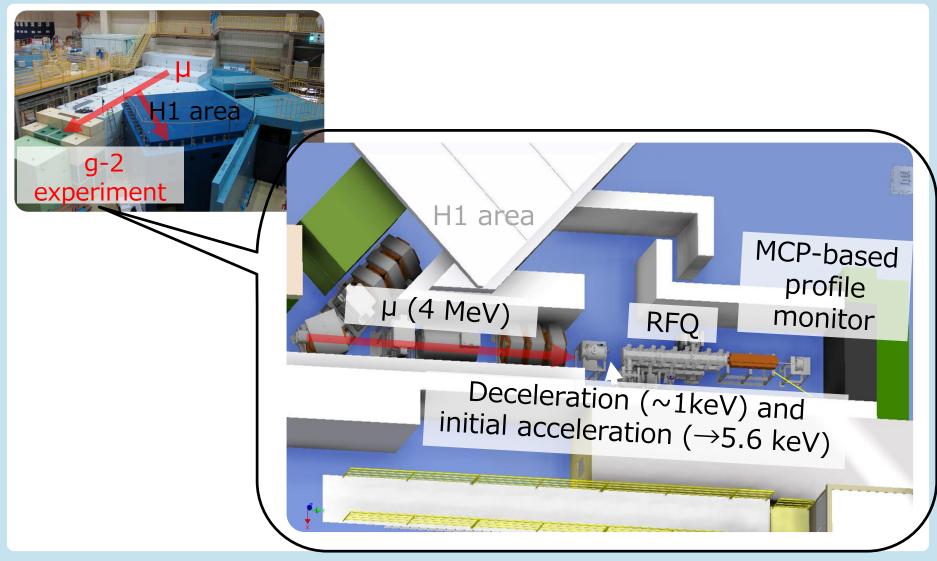
target

neutron

target

Muon Linac Development for precise g-2 measurment

M. Otani, KEK, Japan


20/24

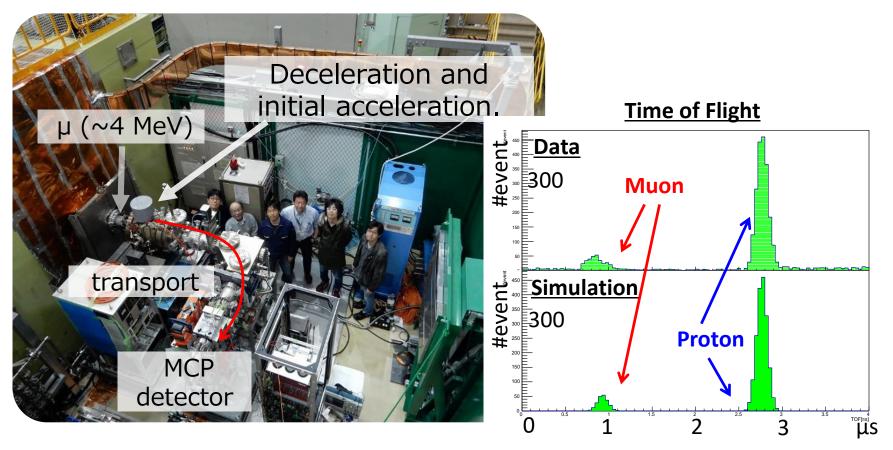
Intro Design Status

Summery

First Commissioning Setup

Oct. 2016

Muon Linac Development for precise g-2 measurment


M. Otani, KEK, Japan

Marco

Design

@ J-PARC MLF test muon beamline, Feb. 2016.

Slow muon source is ready.

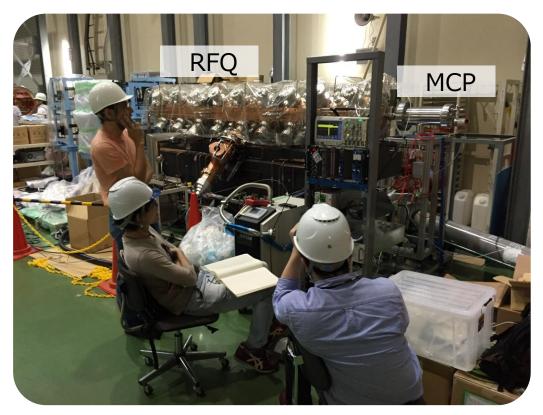
Oct. 2016

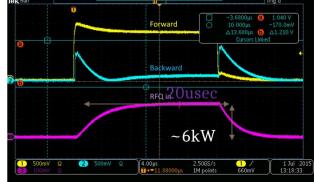
Muon Linac Development for precise g-2 measurment

Status

Summary

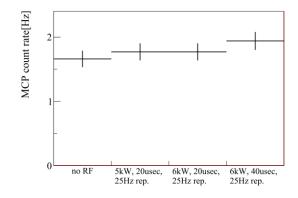
RFQ Offline Operation


Intro


Design

@ J-PARC LINAC facility, Jun. 2015.

☑ Nominal power (4.6 kW) and duty operation.


 \square No RF-related background with MCP.

Status

Summary

RFQ is ready.

Oct. 2016

Muon Linac Development for precise g-2 measurment

M. Otani, KEK, Japan 23/24

<u>Summary</u>

- Muon linac is being developed for new g-2 experiment at J-PARC.
 - 3σ discrepancy between SM and measurement in g-2.
- Reference design for the muon linac has completed.
 - Finish IH dynamics design [PRAB19, 040101, 2016]
 - Finish DAW design and test proto-type.
- Muon acceleration with RFQ is planned, which will be first case in the world.
 - Primary μ beamline is being constructed.
 - Slow μ and RFQ are ready.

Thank you for your attention.

Oct. 2016

Muon Linac Development for precise g-2 measurment

M. Otani, KEK, Japan

Intro Design Status Summary

1

Backup

Oct. 2016

Muon Linac Development for precise g-2 measurment

M. Otani, KEK, Japan