Instrumentation for experiments with high-intensity pulsed muon beam MuSEUM experiment

kanda@post.kek.jp

Production of Muon

Decay of Muon

Muon Spin Dynamics

Muon spin rotation and relaxation

Decay positron time spectrum

In the presence of B-field, muon spin rotates with Larmor frequency

$$\boldsymbol{\omega}_{\boldsymbol{\mu}} = -\frac{qg_{\boldsymbol{\mu}}}{2m_{\boldsymbol{\mu}}}\boldsymbol{B}$$

Spin relaxation occurs due to the B-field distribution

Muon is a powerful probe for local magnetic field thanks to its spin dynamics and self-analyzing feature

G. Bennett, et al., PRD 73 (2006)

Pulsed and Continuous Muon Beam

Pulsed beam : J-PARC, RAL

- Higher event rate
- Higher S/N
- Limited timing resolution
- Pulse synchronized trigger
- Ensemble average

5

Continuous (DC) beam : PSI, TRIUMF, MuSIC

- Less event rate
- Less S/N
- High timing resolution
- Necessity of trigger counter
- Event-by-event analysis

Muon Precision Physics

Measured muon properties

	Method	Beam	Precision	Stat.	Syst.	Ref.
Mass	Muonium HFS spectroscopy	DC (Chopped)	120 ppb	117 ppb	38 ppb	Liu 1999
Mean lifetime	Decay positron counting	DC (Accumulated)	1 ppm	0.96 ppm	0.32 ppm	Tishchenko 2013
g-2	Decay positron tracking in storage ring	Pulse	540 ppb	463 ppb	283 ppb	Bennet 2007

Muon Precision Physics

Muon as a probe for new physics search

	Method	Beam	Limit	Exp.
μ+->e+γ	52.8 MeV e ⁺ and γ back to back	DC	Br<4.2x10 ⁻¹³	PSI MEG 2016
µ⁻N->e⁻N	105 MeV e⁻	DC	Br<7x10 ⁻¹³	PSI SINDRUM-II
µ->eee	e- tracking	DC	Br<1.0x10 ⁻¹²	PSI SINDRUM-I
g-2	µ+ in storage ring	Pulse	Δa _µ (ExpTh.)=289(80)x10 ⁻¹¹	BNL E821 2006
EDM	µ+ in storage ring	Pulse	dµ<1.9 x 10 ⁻¹⁹ e cm	BNL E821 2009
Lorentz Violation	µ⁺e⁻ spectroscopy	DC	2x10 ⁻²³ GeV	LAMPF 1999
μ⁺e⁻ - μ⁻e⁺ conversion	e ⁺ e ⁻ annihilation	DC	P<8.3x10 ⁻¹¹	PSI 1999

Towards Higher Precision

- Precision muon physics with continuous muon beam has been limited by statistical uncertainty.
- When statistical precision is improved severalfold, systematic uncertainty limits the measurement precision
- To explore the new frontier of precision muon physics with high-intensity pulsed muon beam, both
 - High-rate capable detector
 - Precision control and monitoring of environment
 - are of importance
- In this talk, as an example of new generation of muon precision measurement, MuSEUM experiment is introduced.

Muonium Energy Levels

9

- Direct measurement at zero magnetic field (δν)
- Indirect measurement under a high magnetic field (v₁₂ and v₃₄)
- Our goal is x10 improvement for both experiments

MuSEUM Experiment

10

MuSEUM Instruments

Positron counter

- Segmented scintillator+SiPM
- Positron counting
- High rate capability is required

- Fiber hodoscope
- Beam monitoring
- Minimum amount of material is required

- Offline beam profile monitor
- Background monitor

Online beam profile monitor

- IIF+CCD beam imager
- 3D muon stopping distribution
- Beam tuning

 Lq. scint.+WFD
Neutron/Gamma/ Positron discrimination
Self trigger

DAQ Overview

Positron Counter

Scintillator pixel+SiPM+Kalliope (ASD+multi-hit TDC)

- Two layers of segmented scintillation counter
- 10 mm×10 mm× 3 mmt unit cell , 240 mm × 240 mm detection area
- High rate capability and tolerance to a high magnetic field

S. Kanda, PoS(PhotoDet2015) 039 (2016)

Frontend Electronics

Kalliope: KEK Advanced Linear and Logic-board Integrated Optical detec for Positrons and Electrons

14

- 32ch inputs for MPPC
- ASIC implemented amplifier, shaper, discriminator
- FPGA programmed multi-hit TDC (common start)
- SiTCP data transfer

M. M. Tanaka, K. M. Kojima, T. Murakami, S. Kanda, C de la Taille and A. Koda, "MPPC frontend module for muon spin resonance spectrometer" (to be published)

MPPC on PCB

15

Eight layered PCB for MPPC mount

PCB with mounted MPPCs

Micro strip line impedance was adjusted to 50 Ohm

Circuit Design

White Paper Mask

White paper mask for light diffused and position marker

of photonWhite paper

Black paper

Photo detection comparison between black and white paper mask

16

White paper mask on a PCB as position marker and reflector

Reflector Film

Thin polymer film with folding for light reflection

Laser cut ESR

ESR ribbons to be inserted

N. Inadama et al., IEEE Transactions on Nuclear Science, 51, 1 (2004)

Positron Detector Assembly

Assembled Positron Detector

Fully assembled scintillator segments

ESR top cover

Top cover was placed for scintillator protection

Installation

Hit Map on the Detector Plane

Time Spectrum

Time spectrum of coincidence hit Instantenious event rate was 10 MHz at maximum 30 coincidence hit per pulse

High-Rate Capability

5% of pileup loss at the highest event rate Systematic uncertainty due to the pileup loss is negligible

2016. 10. 13 at J-PARC dsys workshop

23

Fiber Beam Profile Monitor

- Cross-configured fiber hodoscope with SiPM readout
- To be placed in front of the target chamber
- Online monitoring of beam profile and intensity
- Minimum amount of material is required
 - S. Kanda, RIKEN Accelerator Progress Report Vo. 48 (2015)

Scintillation Fiber Array

40 fibers are bundled for a ch. and connected to MPPC

Fiber Thickness Uniformity

3% of Uniformity

Total thickness including fibers, resin, and substrate

26

Assembled Fiber Monitor

Installation

Measured Beam Profile

Horizontal projection

Vertical projection

29

- Muon beam profile was measured by fiber beam profile monitor
- Correction for light attenuation is to be applied

Beam Intensity Stability

8000

Detailed analysis is in progress

Summary

- Precision muon physics with continuous muon beam has been limited by statistical uncertainty.
- Experiment with high-intensity pulsed beam has great potential to improve precision muon physics.
- To explore a new frontier of precision physics with high-intensity pulsed muon beam,
 - High-rate capable detector and
 - Precision control and monitoring of environment
 - are essential.
- MuSEUM has got underway as a new generation of precision measurement with the highest intensity pulsed muon beam.

Supplements

Environment Monitors

Object	Instrument	
Static B-Field	Fluxgate probe	
RF Power	Thermal power sensor	
Gas Pressure	Capatitance gauge	
Gas Purity	Q-Mass	
Temperature	Thermocouple	

Hydrogen Atom Spectroscopy

The progress of hydrogen atom spectroscopy had brought evolution of quantum mechanics

Positron Detector

MPPC on PCB

