計測システム研究会2016 @ J-PARC October 13-14, 2016

J-PARC T59 WAGASCI実験の 信号読み出しシステムの開発

Naruhiro CHIKUMA Department of Physics, the University of Tokyo

竹馬 匠泰 東京大学 理学系研究科 物理学専攻

J-PARC T59 experiment: WAGASCI

Experiment

► J-PARC neutrino beam at Neutrino Monitor Hall. ² 250

 \geq 1 ton target with half H2O/half CH.

Physics goal

Cross section ratio measurement **between H₂O/CH** for charged-current interaction with different neutrino energy ranges.

Schedule

- > Detector construction: **Started now!** Complete H₂O/CH Module *by Feb/Mar 2017*.
- > NU beam data taking: will start *at the autumn 2017*.

INGRID

Detector configuration

Three-dimensional grid structure of scintillator bars.

5.0cm

2.5cm

5.0cm

- \rightarrow 4 π solid angle acceptance around target.
- 3-mm-thick scintillator bars.
 - \rightarrow Large target mass of 80% in fiducial volume.
- \geq 16 layers compose a H₂O/CH module.
 - \rightarrow 1m x 1m x 0.5m target region.

Charge measurement

- Scintillation light is collected through WLS fibers to 32-channel arrayed MPPCs.
- \geq 32 fibers are gathered together by a fiber bundle.

Neutrino beam measurement

J-PARC Neutrino beam

8-bunch spill structure.

- ➤ 2.48sec cycle.
- ➤ 8 bunches w/ 580ns time gaps.

<u>Requirement</u>

Energy deposit --> Tracking, Particle ID.

~10 p.e. in average.

- Threshold @1.5 p.e.
- High accuracy of *a few %*
- Hit timing --> Hit clustering, TOF.
 - 3ns resolution.

The WAGASCI DAQ

- Open an acquisition gate for the whole period of a spill: ~5 μs.
- Conversion/readout: ~A few ms.
- Any hits over a fixed threshold during acquisition period are automatically triggered chip by chip.

Photodetector

 32-channel arrayed MPPC.
 Type No. S13660(ES1)
 Dark noise & after pulse suppressed.
 Noise rate: ~6kHz /channel (V_{th}~0.5 p.e.) ~100Hz /channel (V_{th}~1.5 p.e.) *0ver voltage~3.0V

- Operation voltage: ~56V
 Gain: ~10⁶
- ≻ Flexible printed circuit cable.

	Number of channel
Water Module	1280
CH Module	1280
INGRID	528

*INGRID modules are not readout by the WAGASCI electronics, but by the T2K electronics with TFBs. *see supplemental slides.

WAGASCI electronics

Electronics boards		Num /Mod
ASU (Active Sensor Unit)	Readouts a 32ch MPPC array with a SPIROC chip.	40
Interface	Transfers DAQ signals and MPPC bias voltage.	2
DIF (Detector InterFace)	Send DAQ signals and SPIROC configuration.	2
GDCC (Giga Data Concentrator Card)	Transfer signals between DAQ PC and DIFs.	1
CCC (Clock & Control Card)	Provides clock signals and fast control.	1

<u>SPIROC</u> (Silicon PM Integrated Read Out Chip)

- Product of Omega (France).
- Dedicated very front-end ASIC for an ILC.
- Both analog signal processing and digital are contained in chip.

Charge measurement.

2 gains/ 12-bit ADC \rightarrow wide dynamic range: *1pe* – *2000pe*.

➤ Time measurement.

12-bit TDC with ~100ps step.

>Auto-trigger.

Internal discriminated signal is used for *Track-and-Hold circuit*.

36-channel readout.

≻16-deep analog memory.

➤CQFP240 package.

>5V/3.5V operation.

≻25µW per channel

SPIROC2D analog part

➢ PreAmp Fast shaper & Discriminator ✓ Low gain: x1 - x15 ✓ 15ns shaping time ✓ 10-bit DAC threshold ✓ High gain: x10 - x150 Slow Shaper Auto-triggering with this discriminated signal ✓ 50 - 100ns shaping time Time measurement \checkmark Charge is stored in analog Charge & Time is memories with Track&Hold With ramp signals. 16-deep analog Slow memory Shaper 0.1pF-1.5pf 1.5pf Fast Analog memory shaper PreAmp 50 -100ns (LG) Depth 16 selectio Slow Shape 0.1pF-1.5pF 12-bit Wilkinson Charde Auto 15dF ADC measurement 50-100ns trigger hold Depth 16 READ HOLD **Fast Shaper** IN PreAmp Conversion Slow Variable delay 80 µs Discri (HG) shaper Trigger Flag П 8-bit DAC Depth 16 TDC 0-5V 4-bit threshold **DAC** output adjustment TDC Analog Time ramp output **TDC** ramp 10-bit DAC measurement Common to the 36 300ns/5 µs channels

SPIROC2 digital part

Acquisition phase

- A column is filled, and moves to the next column at the same time for all the channels at timing of the next "bunch crossing".
- "Bunch crossing" is a coarse time flag for the triggers.
- BCID is controlled by external 2.5MHz clock.

Conversion phase

Bunch

crossing ID

digital part

 36 charge/36 timing in the analog memory are sequentially converted at an ADC with using ramp signals.

selection

BCID

Conversion phase

Analog to digital

Data writing

4 kbytes SRAM

Data Address

• The digital data are stored in 4kbytes SRAM.

Issues on SPIROC2D

□ It is only possible to set the discriminator threshold at its undershoot.

> Due to wrong position between signal and reference in the comparator.

- \rightarrow Much more sensitive to noises on ground.
- → But still able to trigger on 0.5 p.e. level.
- Column 10&14 do not work.
 - ➢ Reset of the column is not properly done.
 - ➢ Still able to be used for T2K neutrino beam structure with 8 bunches.

→ Requirement: Rate of noise and hits from cosmic rays << 2 per spill → OK

*MPPC noise rate:~10⁻²/32ch/5µs@1.5PE_{th}, Cosmic ray hits: <4x10⁻³/32ch/5µs@ground

- **ASU** (Active Sensor Unit)
 - ➤ A SPIROC2D is embedded.
 - ➢ Direct connection to 32-channel arrayed MPPC.
 - ➤ 50-pin connection to an Interface board.
 - > Another ASU board can be put serially via the 50-pin connection.

50-pin Connection to another ASU board

Clair

Connection to 32ch MPPC array

SPIROC2D

32ch MPPC array

11

F. Gastaldi & M. Louzir

Back-end boards

- **GDCC** (Giga Data Concentrator Card)
 - ➢ Designed on 6U VME format.
 - ➤7 DIFs connections (HDMI). 50Mb/s.
 - ➤1 CCC connection (HDMI).
 - >XILINX FPGA Spartan6.
 - Connection's speed auto-negotiation.
 - Preamble bits.
 - Trailer check-sums.

CCC (Clock & Control Card)

- The GDCC board can also be operated in CCC mode, just by programming the CCC firmware.
- ≻Generate/distribute 50MHz clock.
- Synchronize the whole DAQ system.
- ➢ Receive spill signal from beam trigger.

Status of electronics development

Production

> ASU, Interface – Test production is done. Tested at Utokyo & Ecole Polytechnique.

➢ GDCC, CCC, DIF − Final production is done. Tested at Ecole Polytechnique.

- Test operation has been done.
 - ➢ Periodic data taking only with MPPC dark noise.
 - ➤ Confirmed it could be operated at threshold of 1.5 p.e.

Bunch crossing

BCID

- Bunch crossing ID. coarse timing of triggers.
- Bunch structure is well seen.
 - ✓ Peak width : ~1 bin

- ✓ trigger channel : single (0ch)
- ✓ Bunch: width=50ns, freq:250kHz (10bin)
- ✓ Threshold : 2.5p.e. level (DAC value=160)

DAQ signals

- \succ Reset \Rightarrow Acquisition \Rightarrow Conversion \Rightarrow Readout.
- ➢Output data (Dout1b) are transmitted to back-end boards.
- Conversion starts (start_convb) after all of 16 analog memories are filled (ChipSatb).
- Auto-triggers are only valid during the validation signal (val_evt_p) from DIF.

Ramp signals

➢SPIROC2B/D contains two PreAmps of different gains.

➤12-bit Wilkinson ADCs are embedded for each.

Correct behavior of ADC ramp signals.

- $N_{peak-ADCramp} = 2 \times N_{trigger} - 1$ - in order of high, low, high, ..., high *SPIROC2B ignore the first ADC ramp for low gain because of its fluctuation. This is solved in SPIROC2D.

Beam trigger signals are sent to CCC.

✓ Data acquisition is done every spill. → Every 2.48sec.

✓ The whole DAQ system is synchronized to 50MHz clock generated on CCC.

Event tagging system:

✓ *SPILL# information* is merged into the readout data at DAQ PC.

✓ Readout data contain *BCID* (bunch crossing ID), that gives timing of each autotrigger as count of 2.5MHz clock signal after acquisition starts.

Beam trigger & spill# system @NM B2floor

Synchronous beam triggers are distributed out through "TRIG OUT" *NIM level / LEMO connection

*by Sakashita-san

 \rightarrow 100msec before beam trigger. * w/ 16-bit spill number

✓ Beam trigger

 \rightarrow 40 usec before neutrino arrives.

*SPILL# offset should also be taken into account.

SPILL# (lower 16-bit) is distributed out from 16-bit output of ECL/NIM converter module.

*ECL / 2.54-mm-pitch 34-pin flat connection (or 16 NIM out / LEMO)

18

*Acquisition width must be calculated and fixed by using noise rate for filling many of 16 deep memories.

*Max of DAQ frequency is 100Hz, due to handshake b/w DIF and GDCC.

*Margin time between beam triggers can also be used for periodic acquisition.

Software

□Summary

≻The WAGASCI electronics has been designed with SPIROC2D.

- ➤Test operation is being performed at LLR and UTokyo.
- Synchronous readout system for neutrino beam is being designed.

■Schedule

≻The whole DAQ system construction by beginning of 2017.

≻ Will be ready at spring 2017, after test operation and modification.

Supplemental slides

The WAGASCI detector

□ Water tank

DModule

WAGASCI DAQ system

• ASU (Active Sensor Unit)

Readout a 32ch MPPC array with a SPIROC chip.

Interface

Transfer DAQ signals and MPPC bias voltage.

- DIF (Detector InterFace)
 Send DAQ signals and SPIROC configurations.
- <u>GDCC</u> (Giga Data Concentrator Card) Transfer signals between DAQ PC and DIFs.
- <u>CCC</u> (Clock & Control Card) Provide clock signals and fast control.

Modules	# of channels
WaterModule	1280
CH Module	1280
SideMRD (right)	88
SideMRD (left)	88
Vetos	?

SPIROC DAQ signals

DAQ signals

Main Signals between DAQ and SPIROC

□Interface board

- ≻4 ASU chains connection.
- ➢HV supply connection for all MPPCs via connected ASUs.
- \succ LV supply connection for DIF and ASUs.

- ≻Send digital signals to all ASUs.
- ➢ Receive raw data from ASUs, and send it to GDCC with header/trailer.

DIF

- Many modifications
 - ✓ Most of them tested in Spiroc2c
 - Individual Tunable Gain LG, HG
 - Crosstalk between HG and LG
 - "Zero event" suppression : CHECKED, OK !
 - Rate dependency : CHECKED, OK !
 - new TDC
 - new Delay cell : CHECKED, 1 ch fired shows same delay as 36 ch fired
 - AutoGain fixed : CHECKED, OK !
 - ✓ New External Trigger scheme : CHECKED, OK !
 - ✓ Digital part: Timestamp counter 12 → 16 bits : CHECKED, OK !
 - ✓ Improved Input DACs (with probe system)
 - Protection added (PAD Diodes + internal 100ohm)
 - ✓ Channel to channel uniformity : CHECKED, OK !
 - ✓ 4-bit DAC adjustment ch. by ch. : no influence on global threshold : CHECKED, OK
 - Temperature sensor added
 - ✓ LVDS receiver boosted for NoTrig/RazChn

27

eqa

SPIROC 2c: TDC improvements

- Modifications on the TDC
 - To decrease dead time during transition => alternation of a rising and a falling ramp implemented
 - Conservative modification but not completely satisfying solution
 - Anyway, a new TDC has to be re-designed in SPIROC 3

mega

SPIROC2D : Linearity of Charge Measurement

mega

29

Test operation at LLR

Modules

- > New: prototype for the WAGASCI electronics.
 - ✓ new ASU(with SPIROC2B/2D) ... connection with 36-pin FFC.
 - ✓ new Interface board ... transfer of power supply, configuration from DIF, and data from ASU.
 - ✓ new DIF ... the firmware is updated to include SPIROC2D control.

CCC firmware: updated

Beam trigger timing

Data format

GDCC Packet Format

	Dst MAC	Src MAC	Ethernet Type	GDCC pe	Тy	GDCC	Modifier	GDCC_	PktID	GDCC_DataLength	GDCC_Data	PAD	CRC32	
	6 Bytes	6 Bytes	2 Bytes	2 Bytes		2 Bytes) for SF	2 Bytes		2 Bytes	Variable	Pad to Min Ethern et Size	4 Bytes	
DIF d	ata fo	orma	t							SPIROC d	ata format	:		
SPILL hea	on ader	subsect	tion Mai <ac ASC ASC Blac</ac 	field rker CQid> msb CQid> lsb ii tag ii tag		hex 0xFFFC 0x5053 0x4C49	"SP" "IL"	ascii	C	36 Charges $ \begin{array}{c} 0 & 0 & G & H \\ 0 & 0 & G & H \\ 36 & & & & \\ \end{array} $	Charge measu Charge measu Time measure	ure Chn 35 ure Chn 0 e Chn 35 ((12 bit) (12 bit) 12 bit)	SCA SCA Column 15
		CHIP hea	der Mai <id Asc Blai</id 	rker > ii tag ii tag nk space)xFFFD)xFF)x4843)x5049)x2020	"CH" "IP" " "	,		Gain (1 bit)	Time measure Hit (1 bit)	e Chn 0 (1	2 bit)	
			Rav	V DATA	ł	binary				36 Charges	Charge measu	re Chn 35	(12 bit)	
	(CHIP trail	er Ma <id Blai Blai</id 	rker > nk space nk space)xFFFE)xFF)x2020)x2020				36 Times 0 0 G H	Time measure Time measure	e Chn 35 (12 bit) 12 bit) 2 bit)	SCA Column 0
SPILL tra	iler		Ma <ac <ac <nb <ac <ac Bla</ac </ac </nb </ac </ac 	rker Qid> msb Qid> lsb chip> Qid> msb Qid> lsb nk space		0xFFFF 0x00 0x2020]	$\begin{array}{c} 16 \\ BCIDs \end{array} \left(\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	Bunch Cross Bunch Cross Bunch Cross C 7	ing ID (12 ing ID (12 ing ID (12 hip ID (8	2 bit) 2 bit) 2 bit) bit) 0 0	

*Off-axis method

- narrow-band flux
- peak shifted to lower energy
- T2K uses 2.5° off-axis \Rightarrow peak: ~600MeV Iarge v_e appearance probability suppress other interactions than CCQE

INGRID

TFB

□Trip-t Front end Board (TFB)

12 layer board (6 signal routing, 6 power/ground)

≻16 cm x 9 cm.

- Each TFB takes 4 Trip-t chips, up to 64 MPPC channels.
- TFB operation is controlled by an FPGA.

Fig. 4. Schematic of one Trip-t front end channel.

