J-PARC high-p における 次世代高速 DAQ システムの開発

高橋智則 阪大 RCNP (J-PARC 分室)

2016 計測システム研究会 @J-PARC

- J-PARC high momentum beamline
- E50 実験の紹介, DAQ の課題
- R&D
 - software, PC farm
 - ▶ 回路, FPGA-based high resolution TDC
- まとめ

J-PARC high momentum beamline

2016	2017	2018	2019	2020	2021	2022	
			• •				
c	onstructi	on 🗸	•	RUN			
				KUN	2		
			ь II I —	- あり		DUN	-
			r 9 77	(' (μ		KUN	
					1 11 - 43	+>1	7
	2016 	2016 2017 constructi	2016 2017 2018	2016 2017 2018 2019 construction ? トリガー	2016 2017 2018 2019 2020 construction ? トリガーあり	2016 2017 2018 2019 2020 2021 construction ? RUN ドリガーあり	2016 2017 2018 2019 2020 2021 2022 construction ? RUN ドリガーあり RUN

• E16: 一次陽子ビーム, 30 GeV, 10¹⁰/spill

• E50: 二次粒子ビーム (*π*⁻), 20 GeV/*c*, 6×10⁷/spill

J-PARC high-p collaboration:

E16, E50, J-PARC Heavy Ion project で検出器 · DAQ の R&D における協力

J-PARC E16

- 原子核媒質によるベクターメソン質量スペクトル変化の系統的測定
- カイラル凝縮についての研究

E16 spectrometer

- 双極電磁石内にバレル状に 26 module 配置
- 反応レート 10⁷Hz

Tracker

- Silicon Strip Detector (SSD): ~20k ch (暫定)
- **GEM Tracker (GTR)**: ~56k ch σ_x ~100 µm
 - ▶ 100×100, 200×200, 300×300 mm²/module

PID

- Hadron Blind Detector (HBD): ~36k ch
 - CF₄ gas Čerenkov + CsI + GEM (300×300 mm²×4/module)
- Leadglass EMCAL (LG): ~1k ch

GTR(300口), HBD は L1 trigger 作成用に GEM foil からも読み出し (小原 (東大), Oepn-It)

E16 読み出しシステム

- high rate 環境だがL1 trigger rate は~kHz
 - ▶ trigger segment: GTR 624 ch × HBD 936 ch × LG 988 ch
 - FPGA による L1 trigger
 - matrix coincidecne や trigger segment 間の距離で判定
 - latency 2 µsec 以内

アナログメモリによる波形サンプリング

- ▶ GTR, HBD: APV25 (中井 (東大), Oepn-It, CERN RD51)
- ► (SSD: APV25?)
- ► LG: DRS4-ADC board (本多 (阪大), Open-It)
- ▶ high rate でのパイルアップ対策
- ▶ 入射角度の大きい track に対する位置分解能改善
- Belle-II のトリガー・クロック配布モジュール (FTSW)
- DAQ-Middleware (濱田, Open-It)
 - ▶ ~660 MB/spill (+SSD のデータ)

ここから本題

J-PARC E50

チャームクォークを含むバリオンの分光実験

- 重いクォーク → カラー磁気相互作用が弱くなる
- 軽い qq 同士によるペア(diquark)
- λ -mode, ρ -mode
- 励起スペクトル・生成率・崩壊比の系統的測定

E50 spectrometer (暫定レイアウト)

Name	type	Num. of ch	rate	TDC LSB
			[M/layer/spill]	[nsec]
FPT+VFT	Sci.Fi. + MPPC	1,200+1,200	60	1
B.RICH	gas + MPPC	TBD	60	1
(SSD)				
T0	Scinti. + MPPC	140	60	0.025
SFT	Sci.Fi. + MPPC	7,200	76	1
DC+I.DC	Wire Chamber +ASD	4,500	8-16	1
I.TOF	MRPC + amp. + discri.	TBD	8	0.025
S.TOF	Scinti. + FM-PMT	160	8	0.025
S.RICH	gas/aerogel + MPPC	10,000	8	1

• Reaction rate = 3.6M/spill

予想 trigger rate

Name	type	Num. of ch	rate	TDC LSB
			[M/layer/spill]	[nsec]
FPT+VFT	Sci.Fi. + MPPC	1,200+1,200	60	1
B.RICH	gas + MPPC	TBD	60	1
(SSD)				
TO	Scinti. + MPPC	140	60	0.025
SFT	Sci.Fi. + MPPC	7,200	76	1
DC+I.DC	Wire Chamber +ASD	4,500	8–16	1
I.TOF	MRPC + amp. + discri.	TBD	8	0.025
S.TOF	Scinti. + FM-PMT	160	8	0.025
S.RICH	gas/aerogel + MPPC	10,000	8	1

• Reaction rate = 3.6M/spill

予想 trigger rate

1-2M/spill

Name	type	Num. of ch	rate	TDC LSB
			[M/layer/spill]	[nsec]
FPT+VFT	Sci.Fi. + MPPC	1,200+1,200	60	1
B.RICH	gas + MPPC	TBD	60	1
(SSD)				
TO	Scinti. + MPPC	140	60	0.025
SFT (一部)	Sci.Fi. + MPPC	7,200	76	1
DC+I.DC	Wire Chamber +ASD	4,500	8-16	1
I.TOF	MRPC + amp. + discri.	TBD	8	0.025
S.TOF	Scinti. + FM-PMT	160	8	0.025
S.RICH	gas/aerogel + MPPC	10,000	8	1

• Reaction rate = 3.6M/spill

予想 trigger rate

 $1-2M/spill \rightarrow 160k/spill$

Name	type	Num. of ch	rate	TDC LSB
			[M/layer/spill]	[nsec]
FPT+VFT	Sci.Fi. + MPPC	1,200+1,200	60	1
B.RICH	gas + MPPC	TBD	60	1
(SSD)				
Т0	Scinti. + MPPC	140	60	0.025
SFT	Sci.Fi. + MPPC	7,200	76	1
DC+I.DC	Wire Chamber +ASD	4,500	8–16	1
I.TOF	MRPC + amp. + discri.	TBD	8	0.025
S.TOF	Scinti. + FM-PMT	160	8	0.025
S.RICH	gas/aerogel + MPPC	10,000	8	1

• Reaction rate = 3.6M/spill

予想 trigger rate

 $1-2M/spill \rightarrow 160k/spill \rightarrow 15k-23k/spill (on-line tracking)$

E50 DAQ システムの課題

- trigger rate が高い. 100 kHz 以下にするにはon-line 段階で非一様磁場
 中の track reconstruction が必要
- trigger に参加する channel 数が多い.
 - ▶ fiber tracker, DC, TOF, RICH $\Rightarrow \sim 20,000$ ch
- FPGA で on-line tracking するのに必要なコスト
 - Geant4 simulation による実験デザインの最適化
 - 飛跡再構成アルゴリズムの検討・最適化
 - ▶ trigger latency の見積
 - ロジック実装・デバッグ
 - ▶ online 用/offilne 用で異なる回路基板の開発
 - ▶ 大規模 FPGA のボードは安くない
- PC で on-line track reconstruction するほうがラク?
 - ▶ ネットワーク,メモリが高速・安価になってきた
 - しかし、これまで KEK-PS, J-PARC の原子核・ハドロン実験で high level trigger の経験なし
 - ▶ 他の実験グループの文献から必要な CPU の数をざっくり見積もってみる

FAIR CBM (Compressed Baryonic Matter)

- fixed target の重イオン衝突実験
- 10^7 collisions/sec, ~1,000 tracks/collision
- dipole magnet, forward 型の検出器配置
- free-streaming DAQ (1TB/sec)
- Cellular Automaton \mathcal{LLS} track finding
- Kalman filter による track fitting
- SIMD 化したコード

L Kisel CHEP2015

~100 µsec/track/CPU 物理コア (Intel Xeon E7-4860)

⇒ E50 で同程度の reconstruction 性能を仮定すると、100-250 CPU core が必要. 非現実的でもなさそう

E50 での他の物理測定

Main channel: Charmed baryons (Q + qq)

•
$$\pi^- + p \rightarrow Y_c^+ + D^{*-}$$

Data rate: < 0.1 kHz

Byproducts

- Ξ_c baryons
 - $\pi^- + p \to \Xi_c^0 + D^{*-} + K^+$
- Y baryons: yield = $Y_c \times 10^4$
 - $\pi^- + p \to Y^0 + K_s^0$
 - $\pi^- + p \rightarrow Y^0 + K^{*0}$
 - $\pi^- + p \rightarrow Y^- + K^{*+}$
 - $\pi^- + p \rightarrow \Theta^+ + K^{*-}$
- Ξ baryons: yield = $Y_c \times 10^3$

$$\blacktriangleright K^- + p \rightarrow \Xi^0 + K^{*0}$$

•
$$K^- + p \to \Xi^- + K^{*+} : (K^0_s + \pi^+)$$

• $\pi^- + p \to \Xi^- + K_s^0 + K^+$ • $\pi^- + p \to \Xi^- + K^{*0} + K^+$

- Ω baryons : yield = $Y_c \times 10^2$
 - $K^- + p \rightarrow \Omega^- + K_s^0 + K^+$
 - $K^- + p \to \Omega^- + K^{0*} + K^+$
- Drell-Yan channels
 - $\pi^- + p \rightarrow n + \mu^+ + \mu^-$
 - $K^- + p \rightarrow Y^0 + \mu^+ + \mu^-$
- Pentaquark @ LHCb
 - $\pi^- + p \rightarrow \pi^- + J/\psi + p$
- * K beam rate $\sim 1/100$

E50 での他の物理測定

Main channel: Charmed baryons (Q + qq)

•
$$\pi^- + p \rightarrow Y_c^+ + D^*$$

Data rate: < 0.1 kHz

Byproducts

• Ω baryons : yield = $Y_c \times 10^2$ • Ξ_c baryons * $\pi^- + p \rightarrow \bigcap_{k=1}^{0} + D^{*-} + D^+$ • Y baryons: y * $\pi^- + p \rightarrow$ $\mu + \mu^ K^- + p \rightarrow Y^0 + \mu^+ + \mu^-$ • $\pi^- + p \rightarrow Y^- + K^{*+}$ $\pi^- + p \rightarrow \Theta^+ + K^{*-}$ Pentaquark @ LHCb • Ξ baryons: yield = $Y_c \times 10^3$ $\pi^- + p \rightarrow \pi^- + J/\psi + p$ $K^- + p \rightarrow \Xi^0 + K^{*0}$ * K beam rate $\sim 1/100$ • $K^- + p \to \Xi^- + K^{*+} : (K^0_s + \pi^+)$ $\pi^- + p \rightarrow \Xi^- + K_s^0 + K^+$ • $\pi^- + p \to \Xi^- + K^{*0} + K^+$

E50 DAQ concept

- TDC ベースの読み出し回路
 - ▶ 予想 raw data rate ~50 GB/spill (spill-on 2 sec 中に 200-300 Gbps)
- TDC module あたり最低 1 Gbps のデータ転送
- Buffer node: spill のデータを de-randomize (×1/3). データの振り分け
- Filter node: track reconstruction
- 目標: <0.5 GB/spill まで削減 (平均 100 MB/sec 以下)

PC farm Ø R&D

DAQ ソフト開発テストベンチ (Ma, RIKEN)

- ASUS ESC4000-G3 (2U server)
- $2 \times$ intel Xeon E5-2630v4 CPU (10 core/CPU)
- メモリ 256GB
- PCI-E gen3
 - Ethernet NIC: dual 10G, quad 10G, dual 40G, dual 50G
 - (InfiniBand HCA)
 - ► (GPU)

課題

- track reconstruction プログラムの開発, 必要な CPU(GPU) 数の見積
- ネットワークの性能評価
- 負荷分散
- J-PARC Heavy Ion グループ, ALICE-O2 と協力して DAQ software 開発

E50 DAQ software framework

結論からいうと、E50 DAQ software のベースとなるものはまだ決まって ない...

候補: ALFA/FairRoot, DAQ-Middleware, その他?

- ALFA: ALICE-FAIR の共通 software framework
- FairRoot: simulation, 解析, DAQ の'task'(~ プロセス) を扱うフレーム ワーク
- FairMQ: データ送受信のライブラリ

Frontend R&D

現在のプラン

- FPGA TDC module
 - ► LSB 1 nsec: fiber tracker, RICH, drift chamber
 - アンプやディスクリは既存の ASIC を使う. 候補: CITIROC, PETIROC2, DC-FEAT
 - LSB 25 psec: T0, TOF
 - アンプやディスクリは市販の高帯域アンプなどで作成
 - ▶ slewing correction に Time-Over-Threshold も取得
- データ転送: SiTCP 1 Gbps
 - ▶ ビームが通過する検出器の読み出しでは4-5 Gbpsほしい
 - ▶ 1 Gbps × 4–5 links? or 5 GbE? 10 GbE? Xilinx Aurora? CERN-GBT(CRU)?
- 時刻同期: Belle-Ⅱ FTSW でクロックを配る
- self trigger or periodic trigger

将来的な課題

micro-pattern 系の検出器 (SSD, MPGD) を free-streaming (or L1 trigger rate ~1 MHz) でデータを取りたい

FPGA-based high-resolution TDC

- クロックサイクルのタイムスタンプ (coarse counter) → full scale range
- FPGA 内の carry chain を tapped delay line としてクロックサイクルを 内挿 (fine counter) → resolution

FPGA-based high-resolution TDC

- クロックサイクルのタイムスタンプ (coarse counter) → full scale range
- FPGA 内の carry chain を tapped delay line としてクロックサイクルを 内挿 (fine counter) → resolution

FPGA-based high-resolution TDC

- クロックサイクルのタイムスタンプ (coarse counter) → full scale range
- FPGA 内の carry chain を tapped delay line としてクロックサイクルを 内挿 (fine counter) → resolution

bin width を補正する Look-up-Table の作成

- 1 tap あたりの遅延量 (bin width) はバラバラ
- histogram を使った Look-up-Table(LUT) の作成
- $\Delta t_i \propto w_i$
- $t_n \propto \frac{w_n}{2} + \sum_{k=0}^{n-1} w_k$
- FPGA 内の block RAM で histogram 及び LUT を実装

FPGA HR-TDC のテストに使用した FPGA 基板

DRS4-QDC KEK-VME 6U

- Xilinx Spartan-6 (XC6SLX150-2FGG484C), ISE14.7
- 16 ch single-ended analog input
- on-board comparator (LVDS output)
- NIM I/O
- on-board 100 MHz clock
- SiTCP 100 Base-T

基板上でのアナログ入力信号の処理

FPGA HR-TDC のテストに使用した FPGA 基板

DRS4-QDC KEK-VME 6U

- Xilinx Spartan-6 (XC6SLX150-2FGG484C), ISE14.7
- 16 ch single-ended analog input
- on-board comparator (LVDS output)
- NIM I/O
- on-board 100 MHz clock
- SiTCP 100 Base-T

基板上でのアナログ入力信号の処理

実際の LUT (Xilinx Spartan-6 speed grade -2)

- coarse counter 375 MHz (= 2.67 nsec)
- fine counter 10 bit
- 平均 19 psec/bin
- クロックサイクル内挿に最低で も 150 bin 程度必要

分解能測定 (Xilinx Spartan-6 speed grade -2)

分解能 (暫定)

- NIM 信号 (→LVDS→FPGA) の時間差 の $\sigma_{\Delta t} = 30$ psec
- single channel resolution = 30 psec/ $\sqrt{2}$ =21 psec

今後の課題

- multi-hit buffer, leading/trailing edge, multi-event buffer の実装
- 安定性 (温度依存性)の確認
- Xilinx 7-series に移植
- さらに高分解能,多チャンネルの実装

- J-PARC E50 実験 (charmed baryon spectroscopy) では on-line での飛跡 再構成が必要
 - ► tracking (fiber tracker + drift chamber) + PID (TOF + RICH) \rightarrow 20,000 ch
- free-streaming 型 DAQ システムを開発する
 - ▶ 開発コストの削減
 - ▶ 多くの物理チャンネルの同時測定(柔軟性)
- 読み出し回路の開発
 - ▶ 基本は FPGA TDC: 分解能 1 nsec, 30 psec
 - ▶ アナログ情報は ToT
- 今後の課題
 - ▶ 計算機資源 (CPU, GPU) のより現実的な見積
 - ▶ ネットワーク機器の性能確認・選定
 - ▶ software 開発: J-PARC Heavy Ion, ALICE-O2 との協力
 - micro-pattern 系の検出器 (silicon strip, MPGD など)の全データ読み出しは どうするか?

Back up