J-PARC muon g-2/EDM実験 に用いる陽電子飛跡検出器の開発

伊藤 拓実 (九大理 修士2年)

2017/10/03 計測システム研究会 @ 函館

2017/10/3

J-PARC muon g-2/EDM実験

- ◆ 異常磁気能率(g-2)
 - 磁気能率 : $\vec{\mu} = g \frac{e}{2m_{\mu}} \vec{s}$
 - ・磁気能率のg因子:ディラック方程式から g=2

- ◆ 電気双極子能率(EDM) 電気双極子能率: $\vec{d} = \eta \frac{e}{m_{\mu}c} \vec{s}$
 - ・EDMは時間反転対称性を破る物理量 → CP対称性を破る物理量(::CPT定理)
 - ・物質優勢宇宙の解明 (:: サハロフの条件)
 - ・有限のEDMは未発見(< 10⁻¹⁹ *e*・cm)

10⁻²¹ e・cm の感度で 探索することを目指す

2017/10/3

2017/10/3

検出器開発の流れ

陽電子飛跡検出器

- ・崩壊陽電子と時間を正確に測定し 同時に運動量と角度を測定する
- ・大強度パルスビームに対応
- (最大rate: 1.4 MHz/strip)
 - 高granularity
 - 高速応答
 - rate変化の中での安定動作

シリコンストリップセンサー(SSSD) によって実現!!

センサー枚数	:	768枚
総ストリップ数	:	786,432本
センサー総面積	:	7.49 m²

- ・イベントバッファ長(40.96 µs)
- ・高集積化(128ch/chip)

Outline

- ASIC
 - SliT2016TEGの性能評価
 - 次期評価用TEG開発に向けて
- Silicon strip sensor
 - ー 基礎特性評価と品質保証システム開発
- ◆ ASIC、sensor接続試験
 - ー ワイヤボンディングによりASICとsensorを接続
 - → "検出器"の開発
- DAQ
 - ビーム試験によるDAQシステムの運転結果
 - g-2/EDM実験に向けたDAQ試験(HDDの書き込み速度)

ASIC要求性能

Parameter	Requirement	SIiT128A TEG Simulation	SliT128A TEG Result	SliT128A Result
Dynamic range	~ 3 MIP	~ 4 MIP	~ 3 MIP	4 MIP
ENC	< 1600 e	1210 e	1070 e	960 e
Pulse width	< 100 ns	53.5 ns	96.0 ns	155 ns
Time walk	< 5ns	6.5 ns	14.6 ns	11.5 ns
Power consumption	5 mW/ch			3.44 mW/ch

- ◆ Pulse width とTime walkの改善が必要な状況
 - → 次期評価用ASIC: SliT2016TEGを製作

2017/10/3

ASIC回路

性能評価用のASICであるSIiT2016TEGは アナログ部のみを実装

Dynamic range

Pulse height を測定

3fCから32 fC(1MIP~8MIP)の領域でfit

fitした直線からの誤差±5%以内 の領域は1~8 MIP(3.84~30.72fC)

GAIN = 15.7 mV/fC (要求性能19mV/fC)

コンパレータ出力

2017/10/3

10

次期TEG回路

シリコンストリップセンサー

項目	仕様	fgA	figB Biss PAD connection point to 2ndAL	figC
タイプ	Single-sided、p on n、AC coupling			
有感領域	97.28 mm × 97.28 mm		512x2-Bonding PAD for X AXIS (165x100x2)	512x2 ⁻ DC PAD for Probing
厚さ	320 µm	512x2	190um pitch 500(inactive Gap Bonding PAD for Y AXIS (100x165x2) 190um pitch 512x2- AC PAD for strip joint (175x160)	b) (100x65) 512x2- AC PAD for Probing (200x70)
ストリップ間隔	190 µm		figE	
ストリップ長	48.575 mm		active area	
ストリップ数	512×2 blocks		₩ <u>-SSSD</u> **********************************	
98-1-	1 1 2 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1		C pad Bias pad	
2017/10/	[′] З	12	 計測シ	ステム研究会 @ 函館

プローブステーション

- ・プローブカードで一度に複数のストリップをプローブ
 スイッチャーによって目的のストリップから読み出し
 ・AC, DC パッドそれぞれ64chずつプローブ可能
- ・64ch測定したら次の64chをプローブ

2017/10/3

13

目視検査

顕微鏡を使っての目視検査

断線しているものや導通しているストリップ、その他 傷やダメージがないかの確認

スクラッチ傷の見つかったセンサー

 ← スクラッチのあったセンサーと正常なセンサー とのI-V測定の比較
 正常なセンサーとは違い過大電流が流れてしまっているのがわかる

計測システム研究会 @ 函館

2017/10/3

IV · CV測定

I-V total: 190 nA C total : 3040 pF (ともに100 Vにおいて)

センサー出荷時の測定結果が再現されている

異常な挙動を示すセンサーはなかった

2017/10/3

Full depletion voltage

FDVはともに68 Vで一致している

I-V total、C total、FDV測定においてHPKの結果と一致し異常なセンサーは見つからなかった

→ 単プローブでの測定に問題はなく、センサーも正常に動作している

2017/10/3

Full strip scan

2017/10/3

17

Full strip scan

consistentな結果が得られている

→ 総ストリップ検査システムの構築ができた

2017/10/3

◆ Sensor boardにシリコンセンサーとPitch adopterを接着剤で貼り付け

- ◆ SliT128A multi boardにはASICを4枚ずつ導電性ペーストで貼り付け
- ◆ それぞれをMother frameに接着剤で貼り付けし、ワイヤボンディングをしてセンサーとASICを接続

19

センサー接続(ワイヤボンディング)

2017/10/3

DAQシステム開発

DAQ-Middleware (http://daqmw.kek.jp/) ◆RT(robot technology) Middleware を使用した汎用のDAQ software framework

◆"DAQ コンポーネント"単位でシステムを構築する → 限られたマンパワーでも開発可能

◆ネットワーク分散が簡単にできる →ビーム試験からg-2/EDM 実験への拡張が可能

・豊富な使用実績

- J-PARC MLF
- J-PARC Hadron E16
- CANDLES

DAQ-Middleware をベースに DAQ システムを構築していく

DAQシステムの開発方針

- ◆ ビーム試験に向けて、小さなDAQ システムを構築する。
 実践を踏みながら、徐々に拡張して、g-2/EDM実験用
 DAQシステムを構築していく
- ◆ DAQ システムを大きくした時の懸案事項を別途、試験する
- 1. ビーム試験用DAQシステム
 - ー システムの構築
 - ー ビーム試験での運転結果
- 2. g-2/EDM 実験用DAQ システム
 - 要求
 - DAQ 試験(HDDの書き込み速度)
- 3. まとめ

ミューオンビームを用いたビーム試験(1回目)

23

◆ 課題

数分~数十分でDAQ が止まることが頻発した。

- DAQ PC の性能不足。

2017/10/3

- 評価試験用FPGAfirmwareは、ビーム試験には使いづらい。

検出時刻 [bit]

ミューオンビームを用いたビーム試験(2回目)

◆ 読み出し基板(2枚)とDAQ PC(2台)でセンサー全面を読み出し ー DAQ PCを新調 ー "実験用" FPGA firmwareを準備

ミューオンビームを用いたビーム試験(2回目)

2 台のPC を用いたDAQ 運転

40 MB/sのデータ収集レートにおいて安定した運転を実現!

- ー エラーは数時間に一度程度
- ー 並列して行っていたデータ圧縮・転送処理が主な原因

2017/10/3

J-PARC muon g-2/EDM実験用DAQシステムへの要求

データ収集のサイクル

- ◆ 全てのデータを保存するため特殊なトリガーはなし
- ◆ 大容量のデータを出すのはシリコンストリップ検出器のみ ー ビームモニタ等がDAQシステムに加わる可能性があるが、データ量は対して大き くない
- ◆ 一部のデータをモニタ用にサンプリングし、検出器の運転状況を確認する
- ◆ 予想データレートは440 MB/s
 - (2.2 Mhit /spil) × (8 bytes/hit) × 25 Hz
 - 1 spil 当たり40,000 ミューオン

J-PARC muon g-2/EDM実験用DAQシステムのデータフロー

必要なPC の台数(N_{read}, N_{write})を見積もっていく

2017/10/3

DAQ試験(データ書き込み速度)のセットアップ

読み出し基板のトリガーレートを変えながら、データ書き込み速度を測定

・各点で50 GBのダミーデータを書き込み

◆ 120 MB/sまではデータロスなく書き込みできている

◆ 120 MB/sで12時間運転して書き込み失敗していないことを確認

→ データ書き込み用のPCは最低4台必要!

- g-2実験のレート: 440 MB/s

2017/10/3

まとめ

- ◆ 読み出しASIC、Silicon strip sensorの性能評価、DAQシステムの開発等、各領域での 研究・開発が進行中である
- ◆ ASICのシミュレーションではTime Walk以外は要求値を満たすような結果になっている
 一 RC微分回路を用いた次期TEGを開発し、性能評価を行う
- ◆ センサーの性能評価を行い、総ストリップ検査での品質保障システムの開発も進行中である
 - 今後はさらに詳細な検査を行い、品質保証基準を設ける
- ◆ ASICとセンサーを接続した"検出器"の開発を行った
- ◆ ビーム試験用のDAQシステムを構築した
 - 2度のビーム試験で基本的なDAQの動作を確認した
 - ー g-2/EDM実験用DAQシステムを検討するためにHDDへの書き込み速度の測定を行い 本実験に向けたシステムの開発が進行中である

2017/10/3

BACK UP

センサー検査項目

検査項目 測定内容・目的		プローブ場所
目視検査	目視によるセンサーの傷等の検査	
I-V total	IV測定・ breakdown voltage検査	Bias pad
C total	検出器容量の計算の計算	Bias pad
Full depletion voltage (FDV)	完全空乏化電圧の測定・確認	Bias pad
Strip leakage current	ストリップに流れる電流・断線等の検査	Bias pad、DC pad
Strip resistance	ポリシリコン抵抗値測定	Bias pad、DC pad
Strip capacitance	ストリップ容量測定	Bias pad、AC pad
C interstrip	ストリップ間容量測定・検出器容量の計算 (検出器容量 = C total/strip + 2 x C interstrip)	Bias pad、AC pad
C coupling	Al strip - p+ strip間の容量測定・絶縁層不良検査	Bias pad、AC, DC pad

━━━ 単プローブ測定 ━━━ 総ストリップ測定

2017/10/3

単プローブ測定

2017/10/3