

Run: 281411 Event: 312608026 2015-10-11 18:40:58 CEST

Level-0 muon trigger for HL-LHC

加納勇也 (名古屋大), ATLAS日本トリガーグルーフ Open-It

2020/11/26

はじめに

本研究は、Open-Itの複数のプロジェクトの支援のもとに進めています。

- TGC検出器用新型PSボードの開発
 <u>http://openit.kek.jp/project/atlas_tgc_new_psboard</u>
- TGC検出器用新型Patch-Panel ASICの開発 <u>http://openit.kek.jp/project/atlas-tgc-pp</u>
- TGC検出器用新型Patch-Panel ASIC用試験ボードの開発 <u>http://openit.kek.jp/project/atlas-tgc-pp-ev</u>
- ミューオン検出器フロントエンド制御のための JTAG Assistance Hub moduleの開発 <u>http://openit.kek.jp/project/JATHub/JATHub</u>
- 高輝度LHC-ATLAS実験のための初段µ粒子トリガーボード開発 <u>http://openit.kek.jp/project/atlas_phase2_sl/atlas_phase2_sl</u>

Openit Open Source Consortium of Instrumentation

High-Luminosity LHC (HL-LHC)アップグレード

LHC-ATLAS実験:

- √*s* = 13 14 TeV *pp*衝突の エネルギーフロンティア実験
- 目的:新粒子探索、 標準模型の精密測定
- バンチ交差 40 MHz

HL-LHC :

HL-LHCに向けたトリガーシステム刷新

検出器の読み出し系を増強し、 ハードウェア 現行 HL-LHC トリガーパラメータを変更 トリガー (2015 - 2025)(2027-)トリガーレート 100 kHz 1 MHz これにより、現行より高度な レイテンシ 2.5 μs 10 µs トリガーアルゴリズムを可能にする

4/24

ミューオントリガーのコンセプト

Thin Gap Chamber (TGC) :

- ミューオン検出用の多線式比例計数管
- 高速応答(<25ns)
- 全32万チャンネル

エンドキャップ部ミューオントリガー:

- TGCのヒットをもとに、
 μ粒子候補を再構成
- トロイド磁場の内側の検出器の
 信号と組み合わせ、p_Tを導出する

5/24

TGC

"Send-all" scheme: 高速データ転送技術を活用し、*p*_T分解能を向上させる。

回路系を大幅に刷新

前段ボード

("Patch-panel and Sender (PS)" board)

- 1台でTGC 256チャンネルを受信 (全1434台) 試作機 (2
- 機能:
 - タイミング調整用の可変遅延回路 (µ粒子飛行時間、ケーブル長などを補正)
 - 信号をバンチ交差と同期させるための 識別回路
 - ASDの閾値を調節するためのADC/DAC
 - ASDへのテストパルス送信機能 (コミッショニング用)

Patch-Panel ASIC × 8

9/24

- ASICは全25000個を新しく製造 (2020年3月に完了)
 - 仕様は現行とほぼ同じ (一部マイナーな改善)

PS boardの開発状況

PS board試作機

- 各機能の試験が順調に進行中
 - 例: FPGA programming
 - SFP+光通信 bit error ratio測定
 - ADC, DAC linearity測定
- ファームウェア開発中
- 修正点を洗い出し、試作2号機の製作へ

ASIC量産品の品質試験

- 品質試験用の専用ボードを製造し、
 自動検査システムを構築(1個あたり1~2分)。
- 25000個中の6000個以上を試験完了し、 歩留まり>90%を確認(要求:>50%)
- ICソケットとASICとの接触不良に悩まされたが、ソケットを置き換えて解決した

PS boardの放射線耐性

- 要求:高放射線環境で10年以上稼働
- TID, NIELについては放射線照射試験 で検証済み(バックアップ参照)
 - 最大180 Gy TID:
 - 最大1.6×10¹² $n_{1 \text{ MeV equiv.}}$ /cm² NIEL:

Single event upset (SEU):

- FPGA Soft Error Mitigation (SEM) 試験:
 - PS boardのテストボードをATLAS検出器 表面に設置(2018年9月の物理ラン中)
 - 観測した全てのSEU事象について、 SEM機能によるFPGA自動復帰を確認した
 - HL-LHC環境に外挿すると、PS board 全1434台のSEU発生は10秒に最大1回
- 稀にFPGA 1つでSEU 2事象が同時発生すると、SEM機能が機能しない懸念 → 外部からSEU回復を制御する(次ページ)

制御ボード ("JTAG Assistance (JAT) Hub" board)

12/24

試作機 (2020年4月製作)

- 1台でPS board 11台を制御 (また、近隣のJATHub 2台と接続)
- 全148台
 - 特徴: 13対のRJ45ポート (PS board, JATHubとの接続用)
 - Zynq SoCの使用
 - BOOTシステム(QSPI flash, SDカード×2):
 ブートファイルを2コピー用意して冗長性を確保

JATHubを用いたremote control

- 1. PS boardのSingle Event Upset (SEU)対応
 - 多くの場合はPS board FPGAのSoft Error Mitigation (SEM) 機能で対処可能 (※全1434台のSEU発生は10秒に最大1回程度)
 - SEM機能が対処不能の場合、
 JATHubから自動reconfigurationを行う
- 2. PS boardのクロック位相の監視
- 3. FPGAへのremote JTAG access (Xilinx Virtual Cable使用)
 - Firmware programming (FPGA, flash)
 - デバッグ
 - 信号観測 (Integrated Logic Analyzer)
 - bit error ratio測定 (IBERT)

JATHub remote controlの試験

• JATHub – PS board接続試験を実施 (2020年10月)

- SEU対策の自動reconfigurationを実証した
 - 1. PS boardからの救難信号をJATHubが検知
 - 2. JATHub → PS boardへPROGBを送信
 - 3. PS board FPGAがreconfigureされた
 - ポイント:Zynq内のSEUによる誤動作を防ぐ ため、多数決ロジックを実装している
- 他機能も実証した
 - PS boardのクロック位相の監視
 - Remote JTAG accessによるconfiguration

ネットワーク

SL board 開発とチャレンジ

基板: 試作機の回路図・レイアウトを作成中

- 135チャンネル用の光モジュールの配線
- 大規模FPGAの消費電力と排熱

ファームウェア: 試作版の開発が進行中

- 大規模FPGAの特性に基づいた ファームウェアデザイン
- 大規模RAMの活用

135チャンネル用の光モジュール配線

- Samtec FireFlyを採用
 1モジュールで光ファイバー12本を扱う
 - メリット:フットプリントが小さい

- 汎用性を高めつつ、フロントパネルの占有面積を小さくするためのデザインを採用
 - FireFly 2モジュールを、1つのMTPケーブル (24 link)に接続する
 - カセットを用いてMTP端子をLC端子へ変換し、各接続先と配線

FPGA (XCVU13P)の消費電力の試算

	Device		Total On Cl	in Power	101.4	14/		29%	Transceiver	28.976W
mily	Virtex UltraScale+		Total On-Ci	Total On-Chip Power		101.4 VV		3%	I/O	2.565W
vice	XCVU13P		Junction Ter	Junction Temperature		°C		60%	Core Dynamic	60.948W
kage	FLGA2577		Thermal Ma	Thermal Margin		54.7W		9%	Device Static	8.883W
ed Grade	-1		Effective OJA		0.5 °C/W		Power supplied to off-chip dev		chip devices	0.241W
mp Grade	Extended		-							
	Typical		On-Chip	Power			ı E	Power	Supply-	
			Resource		Power			Source	Voltage	Total (A)
aracterization	Production (± 15% a	accuracy)				(%)		VCCINT	0.850	79.600
				CLOCK	5.629	6		V _{CCINT_IO}	0.850	0.211
Environment			LOGIC	26.501	26			0.850	0.652	
tion Temperature	User Override			BRAM	3.063	3		VCCAUX	1.800	1.953
pient Temp		25.0 °C		DSP	7.771	8		V _{CCAUX} IO	1.800	0.153
tive OJA	User Override		Core	PLL	1.062	1		V _{CCO} 3.3V	3.300	
		250 LFM	Dynamic	ММСМ	0.739	1		V _{cco} 2.5V	2.500	
t Sink	Medium Profile			Other	0.213	0		V _{cco} 1.8V	1.800	1.500
		60.5 °C/W		Hard IP	0.000	0		V _{cco} 1.5V	1.500	
d Selection	Medium (10"x10")			URAM	15.970	16		V _{cco} 1.35V	1.350	
Board Layers	12 to 15	12 to 15		10	2.565	3		V _{cco} 1.2V	1.200	
JB			Transpoiwor					Vcco 1.0V	1.000	
ard Temperature				GTY	28.976	29		-		
Imple	ementation									
mization	Power Optimi	ization	Device Static		8.883	9		-	1.000	
									x 1.800	7.463
Messages								MGTYAV	1.200	15.601
								-		
								VCCADC	1.800	0.024

試算条件: トグルレート25% ロジックセル 60% RAM 100% クロック 240 MHz

- Xilinxが提供しているツール (Xilinx Power Estimator)を用いて試算
- 試算値は100 Wで、ボードの供給電力 (350 W)の範囲に収まっている
- ATCAシェルフの空冷で排熱が十分かどうかは、 ボード試作機を用いて検証予定

FPGA構造に基づいたファームウェア開発

- XCVU13P FPGAは、4つのダイを連結し て構成されている ("Stacked Silicon Interconnect")
- ダイ間の信号の送受信には制約がある
 - レイテンシ (O(ns))
 - 信号線数が有限 (計23 Kb分)

 μ粒子飛跡再構成をTGCセクター ごとに実行し、各実行ブロックを 各ダイに配置することとした

→ レイテンシ低減

 光ファイバーの接続先のアサイン をこれに従って定めている

μ粒子飛跡再構成とFPGA RAM

飛跡情報 (18ビット)

- "パターンマッチング"手法:
 TGCにおけるヒットパターンをもとに、
 µ粒子飛跡の角度を導出する (~100 ns)
- 大容量FPGA RAM (UltraRAM 計350 Mb)に
 飛跡の角度情報を事前に格納し、
 それを参照する
- UltraRAMの難点は、データ幅が72 b で固定 (unconfigurable)であること
- 本研究では、飛跡情報(18 b)を 各アドレスに4セット格納することで、 UltraRAMの使用量を節約できた (~100 Mb使用)

μ粒子飛跡再構成のFPGA実機テスト

- Virtex UltraScale+の評価ボード (VCU118)を用いて、 ファームウェアの動作実証を行った
- 試験対象:
 - 一部領域(2.16 < η < 2.19)
 - 単一µ粒子のMCシミュレーション (p_T = 20 GeV)
 - η座標 (アノードワイヤ) のみ
- 結果:
 - 再構成効率:97%
 - レイテンシ:81 ns (固定)
- 性能目標の達成を確認できた

今後の計画

PS board & JATHub board :

- 試作機の性能試験のうち未達成項目を進め、修正点を洗い出す
 →試作2号機のデザインに反映する(目標:今年度中)
- JATHubのクロック監視機能を用いた、
 PS board間のクロック位相の調整機構を実証する
- 試作2号機で修正点を確認出来たら、初期量産品の作成へ

SL board & firmware :

- 試作機の回路図・レイアウトを完成させ、製作へ(目標:今年度中)
- ファームウェアの試作1号を作成。
 試作機で性能試験を実施し、実機仕様へと洗練させていく。

まとめ

- High-Luminosity LHCアップグレードに向けて、
 ミューオントリガーを刷新する
 - TGC検出器の全データを回路室に送信し、µ粒子の飛跡を再構成
- タイミング調整ボード(PS board)および制御ボード(JATHub board)の 試作機の製作を完了した
 - PS boardのタイミング調整機能を実証した
 - JATHub boardによるSEU回復機能を検証し、 slaveのFPGAが正しくreconfigureされることを確認した
- トリガーボード(SL board)の試作機の作成が進行中
 - 多チャンネル光ファイバーの信号を配線するデザインを決定した
 - 大規模FPGAの特徴(ダイ構造、UltraRAMの特性)を踏まえた ファームウェアデザインの作成が進行中
- 総じて、2025年のインストールに向け、開発が順調に進行中

25/24

Backup

PS board & JATHub:素子の放射線耐性試験

- 要求値: 放射線量シミュレーション (FLUKA) を保守的に補正して導出
- 補正係数:ICのロット依存性、線量依存性、シミュレーション不定性

Total ionizing doze耐性:

- 要求:最大180 Gy (補正係数=30)
- 2018-2019年に計8週間の照射試験を実施
- 各素子(ASIC, SFP+, Si5344, SD card etc.)
 のTID耐性を実証した

Non-ionising energy loss耐性:

- 要求:最大1.6×10¹² n_{1 MeV}/cm² (補正係数=8)
- 2019年に計3週間の照射試験を実施
- 各素子(ASIC, SFP+, DAC, LDO, voltage reference)のNIEL耐性を実証した

コバルト60照射室 (名大)

- トリガーアルゴリズムをC++コードでエミュレートし、
 性能を推定した
- トリガー選別効率 (p_T > 20 GeV):
 - µ粒子のMCシミュレーションをもと
 に算出
 - *p*_T分解能の向上によって、
 現行(Run 2)に比べてturn-onがより
 シャープになっている
- ▶ トリガーレート(p_T > 20 GeV):
 - Run 2実験データを重ね合わせて、 HL-LHC環境をエミュレート
 - レート < 30 kHzであり、
 要求を満たしている
 (※ハードウェアトリガーレートの総和は1 MHz)

SL board: 商用MPSoCメザニンの使用

• MPSoCとして、商用のメザニンを採用

Enclustra Mercury XU5 mezzanine

- Xilinx Zynq UltraScale+ MPSoC
- DDR4 SDRAM, eMMC flash, quad SPI flash, Gigabit ethernet PHY, USB

これによって、回路基板の
 開発の手間を削減

TGC検出器回路系の模式図

