J-PARC muon g-2/EDM 実験用 シリコンストリップ検出器の開発

佐藤 優太郎 茨城大学

2020/11/27 計測システム研究会2020

@J-PARC/Zoom

- 1. イントロダクション
 - J-PARC muon g-2/EDM 実験
 - 陽電子飛跡検出器
- 2. 陽電子飛跡検出器の開発状況
 - 検出器モジュールの開発
 - シリコンストリップセンサー
 - 読み出しASIC
 - フレキ基板
 - リジット基板
 - 検出器のシステム全体の検討
 - データ収集システム
 - ネットワーク
- 3. まとめと今後の展望

ミューオンg-2 アノマリー

• 実験、理論ともに非常に高い精度で測定/計算されている。

- 実験精度: 0.54 ppm @BNL E821, PRD 73 (2006) 072003

– 理論精度 : 0.32 ppm *@Muon g-2 Theory Initiative, arXiv:2006.04822*

両者の間には3.7gのずれがあり、新物理の兆候ではないかと約20年間、
 注目を集めている。
 BNL E821 実験の論文の

$$\begin{aligned} - \Delta a_{\mu} &= a_{\mu}^{\text{Ξ}\text{\widehat{k}}} - a_{\mu}^{\text{Ξ}\text{\widehat{k}}} \\ &= (279 \pm 76) \times 10^{-12} \end{aligned}$$

- 理論精度は、BNL 実験の時から約2 倍 (0.62~0.69 ppm → 0.32 ppm) 向上。

ミューオンg-2 で見えている標準理論からのずれを検証するために、 より測定精度の良い・独立した実験が必要。

J-PARC muon g-2/EDM 実験

- ミューオンの異常磁気能率(g-2) と電気双極子モーメント(EDM) を精密に測定し,標準理論を超える物理を探索する。
- 従来の実験(BNL, FNAL) とは全く異なる方式による実験(PTEP 2019(2019) 053C02)
- 2025年の実験開始を目指して、準備進行中。

ミューオンg-2の測定原理

- ミューオン崩壊(µ⁺ → e⁺vv̄) ではミューオンの スピンの向きに陽電子が出やすい。
- 高運動量の陽電子を検出することで、スピンの 向きと運動方向の差の情報が得られる。

<u>ミューオンg-2の精密測定</u>

- 1. 異常歳差運動周期の精密測定
 - 2.11 µs の周期を0.1 ppm で測定したい。
 → O(1 ps) で時間を"正しく" 測定する。
- 2. ミューオンが感じる磁場の精密測定

陽電子飛跡検出器

- ミューオン崩壊から生じる陽電子の崩壊時刻、運動量、放出角度を測定するシリコンストリップ検出器
 - 1. 高いヒットレート耐性とヒットレートの変化に対する高い安定性
 - 5 nsの間に最大30個のミューオンが崩壊。
 - 測定開始から終了までに150倍のヒットレート変化(@寿命5周期分)
 - シリコンストリップセンサー(ストリップ間隔190 μm)
 → 最大ヒットレート: 1.4 MHz/strip
 - 高速応答(立ち上がり時間<50 ns) な読み出しASIC → パイルアップの抑制
 - 2. J-PARCの高強度パルスビームに対応した設計
 - 大容量(8k×128ch) メモリを搭載した読み出しASIC

陽電子飛跡検出器の構造

- センターポールに"ベーン"を放射状に配置する。
 ベーンは4つの"クォーターベーン"で構成される。
- 検出器全体は真空中(0.1 atm)・磁場(3T) 中に設置する。

検出器モジュール"クォーターベーン"の開発状況

- センサーと読み出しASIC は量産中。
- センサーと読み出しASIC 間の信号伝送用フレキシブル基板は既に量産完了。
- 今後の(エレキ関連の) 開発は、
 - 1. 読み出し基板(リジット) の開発
 - 2. 検出器のシステム全体
 の開発

8

シリコンストリップセンサー				
片面シリコ (浜松木) 00 20 20	Iンストリップセ トニクス製, 5138	ンサ- 804)		Bias pad AC pad DC pad
『 J目 センサータイプ サイズ 有感領域 ストリップ間隔 ストリップ長さ ストリップ数	 七様 p on n 98.77 mm × 98.77 mm 97.28 mm × 97.28 mm 0.19 mm 48.575 mm 512 × 2 blocks		SSSD **********************************	
^{厚さ} 検出器容量 実機センサーを - 40 vanes には	^{320 µm} 17 pF 約190 枚製造済。 640 枚のセンサーカ	2 層 み。 おり が必要。	配線(double metal lay)、2 方向から読出し	yer) になって 可能。

読み出しASIC "SliT"

<u>読み出しASIC の特徴</u>

- 高速応答
 - 立ち上がり時間 < 50 ns
 - 信号幅 < 100 ns@1 MIP
- 低ノイズ < 1600 e⁻ @C_{det} = 30 pF
- **Time-walk** < 1 ns @0.5-3.0 MIP
- J-PARC のビームパルス構造(25 Hz) に同期 したデータ読み出し
 - コンパレータ出力を5 ns 間隔でサンプ
 リングして、バイナリデータを大容量
 メモリに保存。

データ収集サイクル

- 試作機"SliT128C" で実験の要求を満たすことを確認した。
 - 論文(link : <u>IEEE, arXiv</u>), 高エネニュースの記事(<u>link</u>)
- 実機量産を開始して、今年度末に納品予定。

試験モジュールの製作・運用

- 試作読み出しASIC "SliT128A" と実機センサーを 用いて、試験モジュールを計4 台製作した。
 - 歩留まりの高いワイヤーボンディング
 - 基板上での複数ASICの安定した動作
 - QA(Quality assurance) システムの導入
 - JINST 15 P04027 (2020)
- 他の実験で試験モジュールを使用中。

フレキ基板①:センサー用FPC

センサーからの信号をASIC へ伝送するための2 種類のフレキ基板(FPC) を製造。

① センサー用FPC (株式会社フジクラ製)

- センサーからの信号をASIC 近傍まで 伝達するためのFPC。
- 狭ピッチ × 大面積
 - 配線部は84 µm ピッチ
 - 最長配線~250 mm
- → 量産(500枚=320枚+予備)が完了した。

センサー用FPC (実機)

フレキ基板2:ピッチアダプタ

- センサーからの信号をASICへ伝送するための2種類のフレキ基板(FPC)を製造。
- ② ビッチアダプタ (株式会社フジクラ製)
 センサー用FPC と読み出しASIC のパッド間隔 を合わせるためのFPC。
- **セミアディティブ工法**により、<mark>極狭ピッチ</mark> (最小 L/S = 15 μm/12.5 μm) を形成。
- → 量産(800枚=640枚+予備)が完了した。

ピッチアダプタ (実機)

読み出しASIC 側 128 本×8

103.75 mm

センサー側 1024 本

13

リジット基板① : 読み出しASIC 用基板

- 8 枚の読み出しASIC をこの基板上で動作させる。
- この基板を通して、読み出しASICの熱を 吸熱する必要がある。

→ ASIC 貼り付け部にサーマルビアを配置

- 冷却性能を確認するために、読み出しASIC 用基板を試作した。
 - 熱伝導性能を確認中。
 - 実機と同じパッド配置でワイヤーボンディングが 出来ることを確認した。

読み出しASIC 用基板(試作機)

読み出しASIC 用基板

リジット基板① : 読み出しASIC 用基板

- 8 枚の読み出しASIC をこの基板上で動作させる。
- この基板を通して、読み出しASICの熱を 吸熱する必要がある。
 入ASIC 即り付け 部にサーフリビアを配置

→ ASIC 貼り付け部にサーマルビアを配置

- 現在、読み出しASIC 用基板の設計中 (Esys 庄子さん)。
 - **多数の電源・信号配線** (約200本/board)
 - 読み出しASICの動作に必要な部品(パスコン、バイアス
 回路の抵抗)の高密度実装

<u>読み出しASIC 用基板のレイアウト図 (実機)</u>

ASIC実装部の拡大図

読み出しASIC 用基板

リジット基板②: FPGA ベースの読み出し基板 (FRBS)¹⁶

FPGA-based Readout Board for SliT (FRBS)

- 32 枚の読み出しASIC のデータをFRBS 上の FPGA で処理して、データ転送する。
- 様々な制約・課題を解決する必要がある。
 - 1. 真空中でのFPGA, IC の排熱
 - 2. 空間的な制約
 - FPGA への信号配線: 700~800本
 - 高さのある部品が配置できる場所は限られている
 - 3. クロック・トリガー信号の分配方法
 - 2 つの分配方法(メタルケーブル or 光ケーブル) を検討中。
- 来年度の試作に
 向けて、設計中。

検出器全体を上から見た図

各内側の位置では1.35 mmの

高さしか余裕がない。

ф58.1

mm

検出器のシステム全体の検討

- データ収集システムを含めた検出器のシステム全体を検討中。
 - 以下はクロック・トリガーを光ケーブルで送る場合を想定。

データ収集(DAQ) システム

- DAQ-Middleware ベースのDAQ システムを使用する予定。
 - J-PARC のビーム周期(25 Hz) 毎にデータを読み出す。
 - トリガー選別は必要ない。
 - 予想データレート: 275 MB/sec @10⁶ muons/s
 - 読み出すボード(Backend board)の数:20
- これまでに試験モジュール用のDAQシステムを構築して、試験してきた。
 ✓ 基本的な機能(並列読み出し、データ保存、モニタ)の動作
 - ✓ 4 枚の基板の並列読み出し(~80 MB/s)
- スローコントロールシステムをDAQ-Middleware に組み込みたい。
- デフォルトのWeb UI を使用しているが、高機能化していきたい。

ネットワークインフラ

- 収集したデータはJ-PARC からKEKCC へ転送。さらに、他のサイトへ転送する。
 1週間(=6 日×24 時間) あたりのデータ量: 143 TB
- J-PARC MLF に高強度ミューオンビームを長時間使用するための専用ビーム ライン(H-line)を建設中。
 - 現在の駐車場のスペースを利用して、 MLFの建物を拡張する。
 - 拡張建屋にネットワークインフラを敷設 する必要がある。

まとめ

- J-PARC muon g-2/EDM 実験のためのシリコンストリップ検出器の開発を進めている。
 - 検出器の心臓部であるセンサー、読み出しASICは量産中。
 - センサー・読み出しASIC間の信号伝送用フレキ基板は既に量産完了。
 - 読み出し基板の開発が進行中。
 - 読み出しASIC 用基板
 - FPGA ベースの読み出し基板
 - 検出器のシステム全体の検討も進めている。
 - データ収集システム
 - ネットワークインフラ
- Esysの方々にはすでに多大なご協力を頂いていますが、今後ともよろしくお願いします。
- 来年度、試作クォーターベーンの製作を開始する予定。
 - 他の実験との共同開発も歓迎しています。
 - MuSEUM 実験@J-PARC MLF
 - ULQ2 実験@東北大ELPH