

The JSNS² experiment

Jungsic Park (KEK) 計測システム研究会, Nov 26-27

J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source

Collaboration meeting @ J-PARC (2020/Feb)

JSNS² collaboration (61 collaborators)

- 6 Japanese institutions (27members)
- 10 Korean institutions (26 members)
- 1 UK institution (1 member)
- 4 US institutions (7 members)

JAEA KEK Kitasato Kyoto Osaka Tohoku

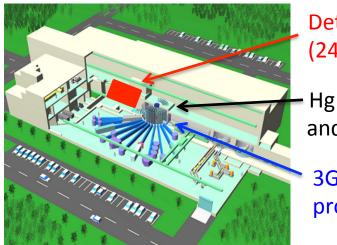
Soongsil Dongshin GIST Seoyeong Chonnam National Seoul National

Sussex

Alabama BNL Florida Michigan

Jungsic Park, KEK

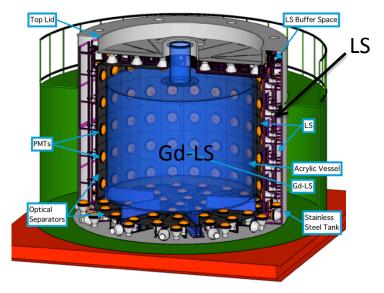
Contents


- Introduction of the JSNS² experiment
- DAQ system
- Quick glance of the data

Indication of a sterile neutrino (Δm²~1eV²)

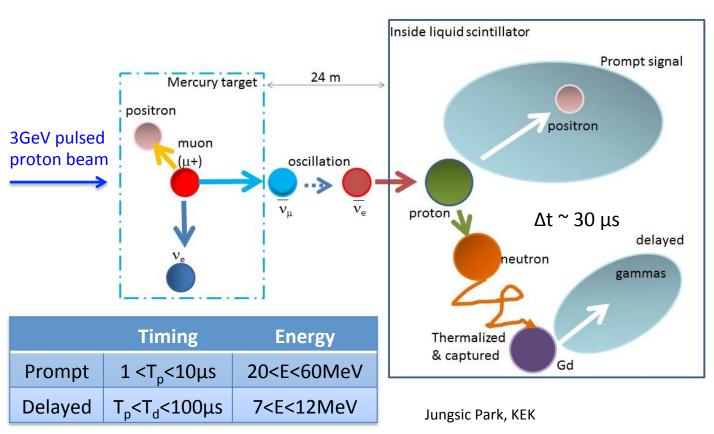
Experiments	Neutrino source	signal	significance	E(MeV) <i>,</i> L(m)
LSND	μ Deacy-At-Rest		3.8 σ	40, 30
MiniBooNE	π Decay-In-Flight		4.5 σ	800, 600
			2.8 σ	
		combined	4.8 σ	
	arXiv:1805.12028	+ LSND	6.1 σ	
Ga (calibration)	e capture		2.7 σ	<3, 10
Reactors	Beta decay		3.0 σ	1-8, 10-100

- Excess or deficit do really exist?
- Note: JSNS² uses the same neutrino source (μ), target (H) and detection principle (IBD) as the LSND \rightarrow even if this is not due to the oscillation, we can catch this directly


J-PARC MLF: one of the world best environments

Detector @ 3rd floor (24m from target)

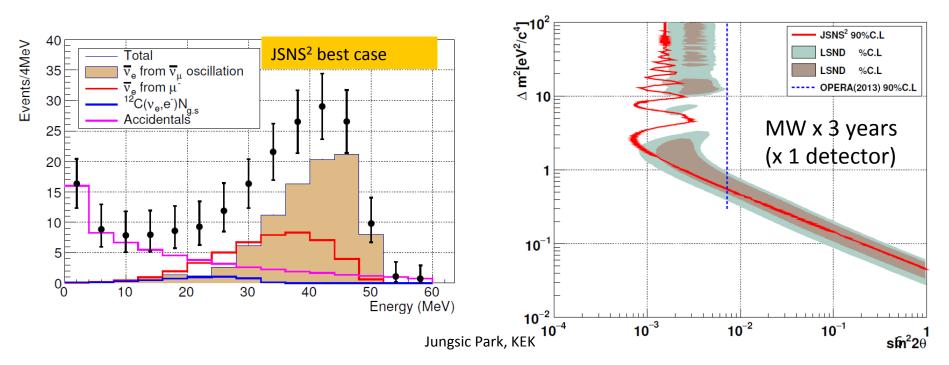
Hg target = Neutron and Neutrino source


3GeV pulsed proton beam

- Searching for neutrino oscillations over a 24m baseline
- do not need new beam-line or building → started !!

- 52t (Gd-loaded + unloaded) liquid scintillator detector
- 4.6m diameter x 4.0m height
- 120 10" PMTs

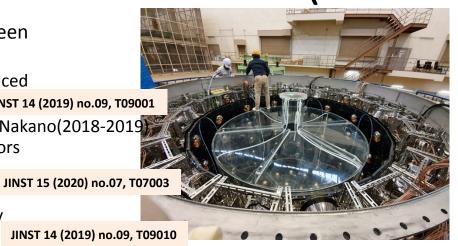
Production / Detection



Most of them are same as the LSND.
→ Direct ultimate tests for LSND.

But use much better beam and Gd loaded LS. → Much better S/N → Much better systematics

Energy Spectrum and Sensitivity (by MC simulation)


- Left: Energy spectrum ($\Delta m^2 = 1.2 eV^{2}$, $sin^2 2\theta = 0.003$)
- Right: Sensitivity of 3 years physics running of JSNS² with one detector.

Detector construction (2017 - 2020)

- Detector construction have been finished in February 2020.
- Stainless steel tank was produced by Morimatsu (2017-2018) JINST 14 (2019) no.09, T09001
- Acrylic tank was produced by Nakano(2018-2019)
- 10 inch PMTs from collaborators
 - RENO / Double Chooz
 - And newly purchased
- 35 tons of LS was produced by Korean collaborators (2018) JINST 14 (2019) no.09, T09010
- 17 tons GdLS was donated by Daya-Bay (2019)
- Electronics were reused or donated by Double Chooz JINST 15 (2020) no.09, T09002
- Fast LED system

Very efficient experiment using reused or donated materials from various experiments. We do appreciate Daya-Bay, RENO and DC.

Detector operation cycle

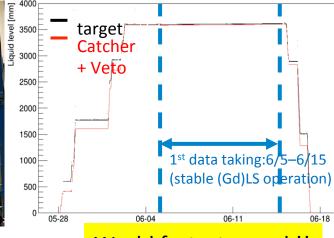
- MLF 3rd floor is the maintenance area for the mercury target and beam equipment. Thus, we need to bring in and out the detector during summer beam shutdown every year (4 months).
- I.e. : we have to fill in and extract out (Gd)LS during short time also.

3

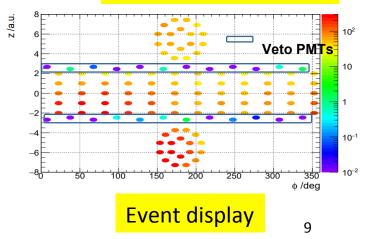
 $\left(4\right)$

Move the detector from detector assembly building (HENDEL) to MLF
 Scintillator filling in MLF 1st floor within 10 days
 Data taking in MLF 3rd floor (1st physics run during 6/5 – 15 June 2020)
 Scintillator extraction again in MLF 1st floor within 10 days again.
 Move the detector to HENDEL

Move detector to MLF



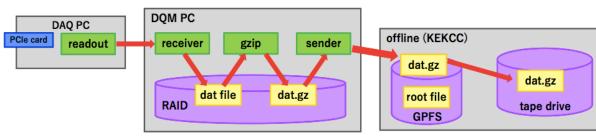
Detector on the MLF



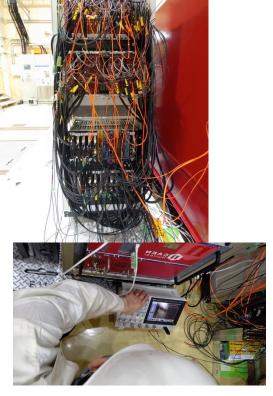
Scintillator filling

Data taking

World fastest speed !!



1st physics run


We took 1st physics data in June

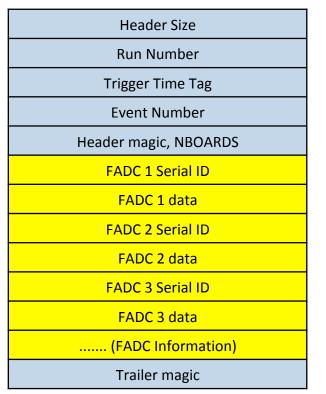
- with 28 CAEN FADCs and 4 optical links
- one DAQ PC and one Data quality monitoring (DQM) PC
- Triggered by the Beam
- LED
- self-trigger (including ²⁵²Cf)
- Several test runs for the next round
- Data is transferred to KEKCC

< Data flow from the DAQ PC to KEKCC >

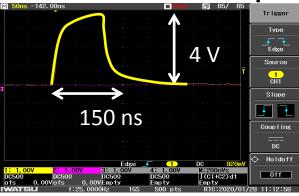
DAQ + DQM

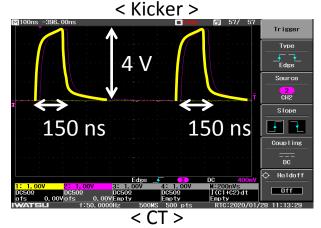
500 MHz FADCs (V1721) are donated from the DC.

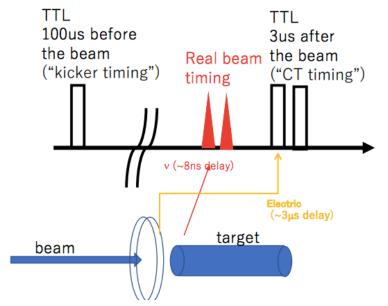
- Arrived in Jan 2019.
- Optical link daisy chain (80MByte/each).


We transfer data with TCP / IP socket to the DQM PC.

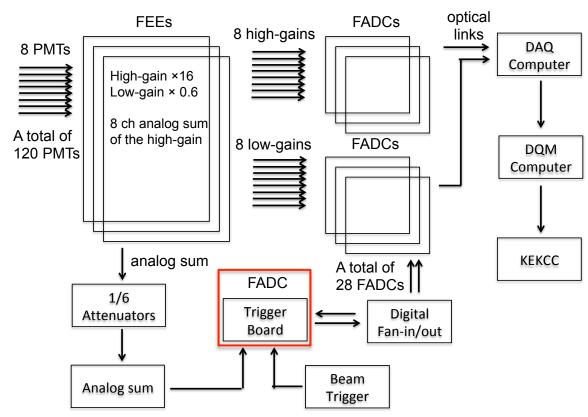
- 1Gbps between the DAQ and the DQM PC
- Adler 32 is used to check the transfer status.


DQM PC


- Installed CentOS 7
- Has 12 TByte storage
- FADC raw data is stored in the DQM storage, compressed, and then transferred to the KEKCC. with 1Gbps ethernet.
- Monitoring the data quickly.
- Conversion of the data to the ROOT format.


Consists of header, body, and trailer.

Beam Trigger Timing from the collision of the proton to mercury target

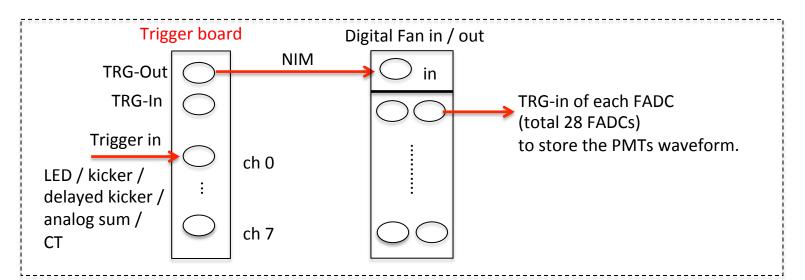


Current Transformer (CT) induced event from magnetic field changing.

- Available from the MLF
- Can confirm the beam "really" came or not 12

JINST 15 (2020) no.09, T09002 DAQ scheme

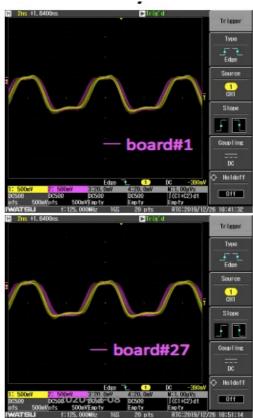
Using special amps with two different gains.

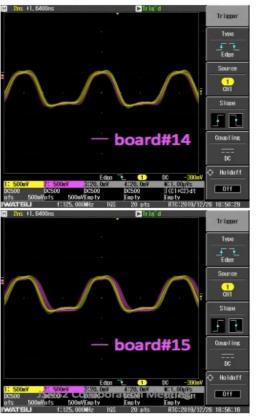

- high-gain for the low energy
- low-gain to increase the dynamic range
- analog-sum of 8 high-gain channels

Assigned one FADC board as a "trigger board".

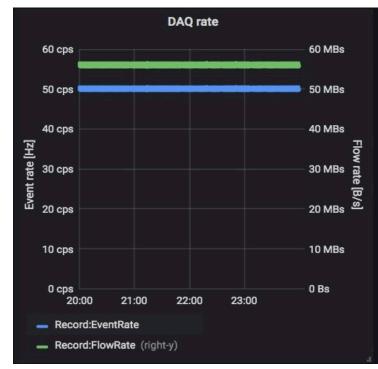
Trigger

We used "external triggers" to store the PMTs waveforms.


- Designated "a FADC Trigger board" to generate a global trigger.
- LED : The controller box generates a external NIM trigger.
- Kicker : Accelerator group provides with a TTL trigger.
- self (including ²⁵²Cf) : Use the analog sum of inner PMTs waveform.
- Each trigger type can be distinguished with a trigger bit.



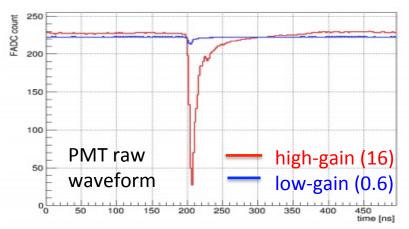
14


FADC timing synchronization

- Each FADC is equipped with an internal clock
- The clocks across the FADCs will, in general, be out of phase
- FADC's clock is synchronized using a daisy chain method
- Trigger board serves as a master clock
- In the oscilloscope screenshot, one can see the clock phase between the master clock (yellow) and each board (violet).
- referred "AN2086 synchronization of CAEN digitizers in multiple board acquisition systems"

Monitoring of the data taking status

RC RUNNING FADC RUNNING Record RUNNING							
RunNum	RunNum Run Type		Run History				
1416	debug	Start Date	RunNumber	▼ RunType			
Run control progress		2020/06/08 10:19:12	1416	debug			
time -	RCState	2020/06/08					
2020/06/08 10:19:12	RUNNING	2020/06/08 09:43:50	1415	debug			
2020/06/08 10:19:12	STARTING	2020/06/08 09:10:27	1414	debug			
2020/06/08 10:19:05	READY	2020/06/08 08:31:06	1413	debug			


Trigger rate

Run Status

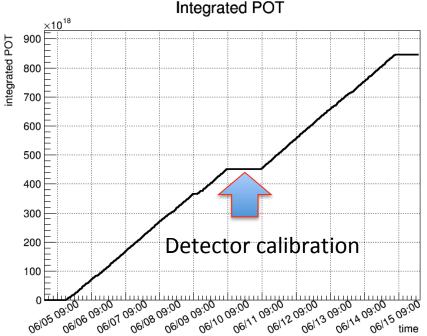
Data quality monitoring (DQM) plots

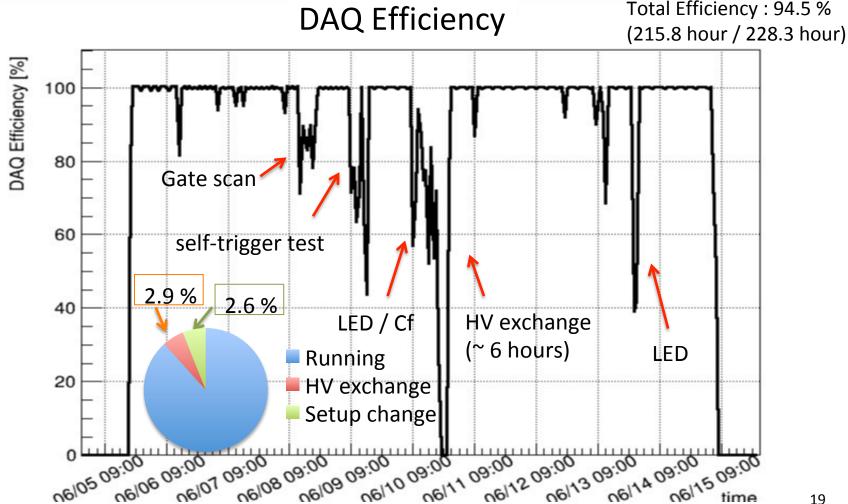
The DQM PC produces useful plots

- PMT raw waveform(Both the high/low gain)
- Trigger bit
- Will add more plots to the next

Beam power / POT

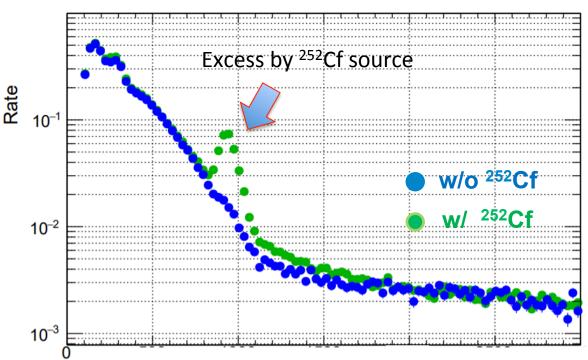
Average Beam power: 602kW (4.97 x 10¹³ POT/spill)


We have mini beam maintenance period on every Wed.


- June-10: 24 hours mini-shutdown.
- Used for the calibration campaign (LED, ²⁵²Cf, run w/o beam)

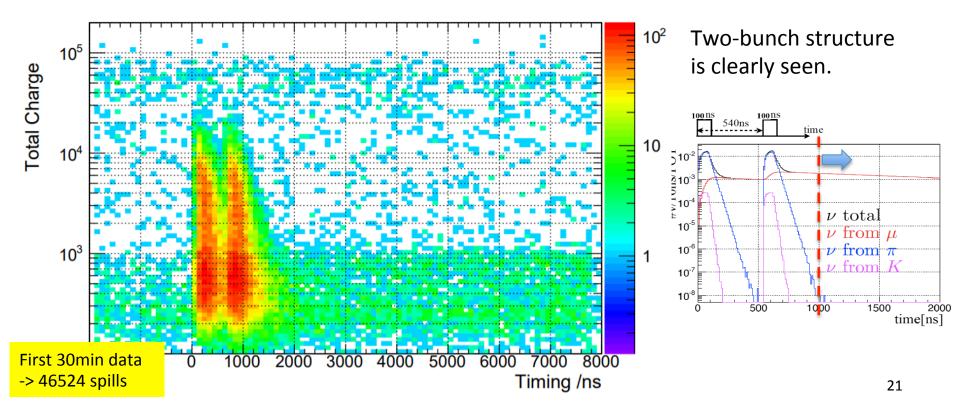
8.46×10^{20} POT for the 1st physics run

- 0.8% of approved POT (by J-PARC PAC)
- Less than 1 IBD event are expected.
- However, our detector is working well, and JSNS² shows strong potential from the next physics run. (from early of next year)


J-PARC and MLF aims to have a design beam power (1MW) as soon as possible and have succeeded the test from June-25 to 27.

²⁵²Cf calibration data (source is put on center)

Single


Can see clear excess due to neutron capture on Gd.

Detector is working well.

Total Charge

Activities around beam timing

Summary

- JSNS² aims to test the LSND anomaly directly.
 - + Uses the same neutrino source (μ), target (H) and detection principle (IBD), but much smaller accidental background due to Gd-loaded LS and low duty factor J-PARC MLF beam.
- Just started data taking from 2020-June.
 - + Operation (filling/extraction) of (Gd)LS have been very smooth without any issues.
 - + With data taking for 10 days (0.8% of data compared to the approved POT), we saw a good potential of this experiment as expected.
 - response of neutron capture signal is clear.
 - activities around beam timing looks as expected
 - similar to 2014 background measurements, and TDR.
- We plan to upgrade the detector and construct the 2nd detector
 - + Essential to improve the sensitivity
 - + Grant was approved !!