

DEVELOPMENT AND QA/QC OF NEW PIXEL DETECTORS FOR UPGRADING THE LHC ATLAS EXPERIMENT

Measurement System Workshop 2021 @ Kyushu University (28th-29th October)

LAKMIN WICKREMASINGHE ON BEHALF OF THE ATLAS ITK PIXEL GROUP

- There are more than 30 institutes around the world.
- Design and build an efficient assembly flow and QA/QC system from the start.

JAPAN QA/QC SYSTEM

JAPAN QA/QC SYSTEM

DATA ACQUISITION (DAQ) SETUP

OSAKA UNIVERSITY

Lawrence Berkeley National Laboratory

8

DATA ACQUISITION (DAQ) SETUP

DATA ACQUISITION (DAQ) SETUP

(TDR - Time Domain Reflectometry) TDR Result from ITk SLAC Team

- The Adapter Card is well controlled to ~100 Ω (Diff. Impedance) just by calculation !
- We used <u>KiCAD</u> for the design, and <u>Saturn PCB impedance calculator</u>.
- ♦ Produced through <u>PCBWay</u> (<u>JLCPCB</u>) for a low price Recommend for quick prototyping.
- Tips (for RF Signal Designs)
 - Use more than 2 layers, to get ~100 Ω diff.impedance.
 - Avoid signal lines going through via's if possible.

Prototype testing succeeded!

YARR DAQ FRAMEWORK

Yet Another Rapid Readout - <u>YARR Docs</u> Last Year's Slides - <u>計測システム研究会2020</u>

- FPGA aggregates data from the ASIC chips.
- Everything
 sophisticated is done
 by the YARR software.

YARR

Firmware

FPGA

TEF1001

YARR

Software

DATABASE

Details can be found on Last Year's Slides - <u>計測システム研究会2020</u>

Long term storage at Czech

COOLING AND DETECTOR CONTROL SYSTEM (DCS)

COOLING AND DETECTOR CONTROL SYSTEM (DCS)

Cavity for dry N₂

Some challenges we had:

Pixel module

- We need to cool to -45 °C ➡ Simply said, use a Peltier (CUI Devices CP854705-2) + Chiller.
- The air should be extremely dry to avoid condensation
 Use dry Nitrogen in a small cavity and make the air circulation fast
- Maintaining temperature at a particular value = PID
 Control
- Accurate measurement of dew point ⇒ We used the SHT85 sensor at first, but found that HYT271 sensor performs better.

Cooling box cross-sectional View

IIV/T071

	SH185	HYIZ/I
Price@DigiKey	¥4,020	¥3,664
Communication	I2C	I2C
Bits	16	14
Temp. Range	-40~105 (± 0.1)	-40~125 (± 0.2)
RH. Range	0~100 (± 1.5)	0~100 (± 1.8)

POWER SUPPLY CONTROL

- A pixel module is operated at ~8 A Constant Current (an ASIC chip consumes ~2 A current at ~1.5 V) and tested up to 1000 V (the sensor).
- We have built a common SW (called <u>labRemote</u>) in order to automate the controlling of lab equipment (power supplies, chillers, etc.) through SCPI.
 - Comes with Python bindings.
 - Already supports a lot of common lab equipment.
 - However, it can also be easily expanded to other power supplies and lab equipment which uses SPCI.

LV : Rhode & Schwarz HMP4040

Non-Electrical Tests and QC Helper

Non-Electrical Test Example - Visual Inspection

- It is necessary to assess the quality of the wire bonding and detect anomalies such as broken wires or improper welding.
 - Some degree of automation is needed due to the large number of wires.

- We need to proceed this in several steps (simply summarized below).
 - Data acquisition (obtaining images 9 images per pixel module)
 - Correct the camera distortion.
 - Standardization (stitching the images = correction of perspective)
 - Feature extraction (Line tracing, defect detection, etc)

QC HELPER	The pra mode	actice for tests	Machine used :	Wirebonding info	information
OC Helper			Operator Name :		
Choose your inspect	ion		Institution of Ope	rator :	*
	1011		Bond wire batch :	ТВА	
Serial Number : practice			Bonding jig :		
Test name	Upload statu	s in localDB	Bond program :		Choose file
Mass Measurement	Pract	ice	Room temperatur	e:	dege
• Wirebond pull tests	Pract	ice	Humidity :		%RI
 Wirebonding Information 	Pract	ice			-
 Parvlene Properties 	Pract	ice	comment :		
○ Glue Information Module+Flex Attac	h Pract	ice	Back		Nevt
O Thermal Cycling	Pract	ice			<u>n</u> ext
 Optical Inspection 	Pract	ice	Current user : prac	tice	practice mode
 Metrology 	Pract	ice			
 Sensor IV at 30 degC 	Pract	ice		🔀 main.py	
Sensor IV at 20 degC	Pract	ice		Metrolog	ду
O Sensor IV at -15 degC	Pract	ice	Result file:		<u>C</u> hoose file
O SLDO VI	Pract	ice			
O RD53A pull-up resistor FE	Pract	ice	Commont		
○ IrefTrim FE	Pract	ice	comment :		
 PCB-Bare Orientation isNormal 	Pract	ice			
Back		Next	Back		Next
Current user : practice	pra	ctice mode 📝	Current user : pract	ice	practice mode

X-RAY SCAN SETUP

Developed and studied by:

X-RAY SOURCE SCAN

- This is effective in evaluating the bumpdisconnection quickly.
 - **De-lamination happens after thermal** cycling.

Challenge: *

- It is hard to evaluate the bump-disconnection \bigcirc under thick components.
- Increasing the DAQ time is risky \Rightarrow X-Ray exposure time < 5 mins.
- Solution currently studying different options.
 - Increasing the DAQ rate to get \bigcirc more hits under components in the same time.
 - Masking parts other than the igodolthick components.

CONCLUSION

- The Inner Tracker system of the LHC ATLAS experiment will be completely upgraded to a new system (called ITk) for the HL-LHC.
- For this upgrade, Japan plans to produce more than 2000 pixel modules.
 - Proper QA and QC of the pixel modules is necessary before installing in the detector.
 - Japan cluster developed it's own QA/QC system, and validated the performance of each part independently.
- We have completed most parts of our system, and verified it can be used to control and assure the quality of pixel modules.
- Although a few challenges still exist, we are working towards solving them through various studies.

QC HELPER - VISUAL INSPECTION

A tick box to mark if there is a problem

The module which is being inspected

A reference of how it should look like if it was perfect

Results will get uploaded to the database by this tool.

HUMIDITY AND DEW POINT

- Another challenge: Accurate measurement of Humidity & Dew Point.
 - We used the SHT85 sensor at first, but found that HYT271 sensor performs better.

Price@DigiKey	• ¥ 4,020	¥ 3,664
Communicatio	on <mark>I2C</mark>	I2C
Bits	16	14
Temp. Range	-40~105 (± 0.1)	-40~125 (± 0.2
RH. Range	0~100 (± 1.5)	0~100 (± 1.8)

Environmental Monitoring with Grafana

Temperature measurement at different points

METROLOGY

A GUI designed by us

PIXEL DATA TRANSMISSION

Upstream Data Transmission in ITk - I

