
GPU offloading in
the High Level
Trigger of the

KOTO experiment
Measurement System Workshop

Mario Gonzalez, Osaka University

Kyushu University

OverviewOverview

WhyGPUs in KOTO's High Level Trigger

Howwe have re-written CPU code formassive parallelism onGPUs

Performance comparison

Goal:

Contents

To encourage you to consider using GPUs in your experiment

To show howKOTO is planning on taking advantage of them

2Mario Gonzalez 28/10/21

Towards heterogeneous Triggers in HEP

Heterogeneous Computing:

Thousands of independent events are readout every second
Online event processing does not require complex calculations

CPUs are used together with accelerators (GPUs,etc)
Each device performs the tasks it is best suited for

HEP experiments

Tens of independent computing cores
that can perform very complex tasks

3Mario Gonzalez 28/10/21

A CPU server

Millions of independent computing
threads that can perform simple tasks

A single GPU

the KOTO experiment aims to measure the
Branching ratio (BR) ofKL

0 0

Physics motivation

4Mario Gonzalez 28/10/21

Theoretically predicted to be very small:

Any small fluctuation from this value
due to physics Beyond the SM can be

easily observed experimentally

BR() ~KL
0 0 3×10 -11

The Beam Intensity Upgrade

Ongoing beam intensity Upgrade at JPARC

64 kW 100 kW (near future)

To KEK
L1 trigger L2 trigger L3 trigger
hardware firmware

The bandwidth to KEK is fixed and it is our main bottleneck

5Mario Gonzalez 28/10/21

software

Detector
4000 channels

Analog waveforms

4x1Gbps = 4Gbps

Hoping to eventually reach 150 kW

Input data rate increases,KOTO's
sensitivity improves faster

DAQ needs an upgrade to handle
the expected input rate

KOTO's data rates at the L3

2300*[trig/s]*100[kW]/64[1/kW]*4000[wfms/trig]

* 16*64[bits/wfm] / 8/2**30[GiB/bit]

= 1.8 GiB/s (2.6 GiB/s assuming a 150 kW beam)

4[Gbps] = 0.46 GiB/s

Input/Output = 1.8/0.46 = 4

Output to KEK:

1 KiB = 1024 Bytes
2300 Triggers/s is the current rate

waveforms / second

GiB / waveform

Input from L2:

6

KOTO's data rates at the L3

Data rate needs to be reduce by a factor of 4 at the L3

Currently,compression is done in CPUs and there is little
room for event selection

Buymore CPUs
Option 1:

Offload the compression stage to a GPU

7Mario Gonzalez 28/10/21

Option 2:

Wecan get a factor of ~3 fromwaveform compression

0.46 GiB/s (fixed)
Compression

max. rate:
0.46*3 =
1.4 GiB/s

1.8 GiB/s
Reduction factor: 3

Event
selection

Needed to
reduce the rate
to 1.4 GiB/s

Requirements of the waveform compression

Maximum input rate: 1.4 GiB/s

Thismeans we have:

1 s to compress 1.4 GiB
1 s to copy 1.4 GiB to/from the GPU

8Mario Gonzalez 28/10/21

Waveform compression in the KOTO experiment

64 bins 64 bins minimum

16
bi
ts
pe
rb

in

N
bi
ts
pe
rb

in
Assuming N = 6,

0

4

9Mario Gonzalez 28/10/21

5 6 51

51 = 2 + N*64/8

1 2

N pedestal

UNCOMPRESSED[0]

0000000000XXXXXX

3

-minimum -minimum

UNCOMPRESSED[63]

0000000000XXXXXX

= +

Uncompressed array (uint16_t)
Compressed array (uint8_t)

The Challenge of doing compression on GPUs

Goal
Take advantage of the huge number of GPU threads to
parallelize for loops andminimize the number of iterations

10Mario Gonzalez 28/10/21

for wfm in packet:

for bin in wfm:
Find minimum and N

for bin in wfm:
Write compressed wfm

~1e7 wfms in a 1.4 GiB packet

64 bins

64 bins

The GPU architecture

Grid 1

Threads within the same block share very fast memory
Grid size and block size are configurable within some limits

11Mario Gonzalez 28/10/21

Block (0,1) Block (0,2)Block (0,0)

Block (1,1) Block (1,2)Block (1,0)

First step

for wfm in packet:

for bin in wfm:
Find minimum and N

for bin in wfm:
Write compressed wfm

~1e7 wfms per packet

Get rid of this loop by processing one waveform per thread

Most of the code doesn't change

12Mario Gonzalez 28/10/21

Results

At least a factor of 2 improvement needed on GPU
At least a factor of 10 improvement needed on CPU

Only using one CPU core!

13Mario Gonzalez

Second step

Start re-designing the code for massive parallelism

Re-write "Find maximum
in an array" on GPUs

14Mario Gonzalez 28/10/21

for wfm in packet:

for bin in wfm:
Find minimum and N

for bin in wfm:
Write compressed wfm

(next slide)

(later)

One block per waveform

64 threads per block

How to find the max/min of an array of integers

Parallel reduction Method 2

1 2 3 4

Computation is fast

Needs to allocate extramemory

No extramemory required

Multiple threads write to the
same address,so needs atomic
operations

...on a GPU

1 2 3 4

1 2

15Mario Gonzalez

1

1 2 3 4

Thread (performs max() / min())
Input
Output

1

Global Memory
Thread Memory

Parallelizing the compression

Write the compressed
array in parallel

for wfm in packet:

for bin in wfm:
Find N

for bin in wfm:
Write compressed array

16Mario Gonzalez 28/10/21

Assuming N = 6,

4 5 6 51

UNCOMPRESSED[0]

Option 1: As many threads as waveform bins (red squares): 64

Every thread subtracts the minimum from
one input element

Multiple threads write to the same
address simultaneously, so atomic
operations are needed

17

0000000000XXXXXX

3

-min -min

UNCOMPRESSED[63]

0000000000XXXXXX

Uncompressed array (uint16_t)
Compressed array (uint8_t)

Parallelizing the compression

XXXXXXXXXXXXXXXXXX

2 2 3 31

43

Option 2: As many threads as compressed bytes (green squares)

Assuming N = 6,

4 5 6 51

UNCOMPRESSED[0]

0000000000XXXXXX

3

-min -min

UNCOMPRESSED[63]

0000000000XXXXXX

Uncompressed array (uint16_t)
Compressed array (uint8_t)

18Mario Gonzalez 28/10/21

XXXXXXXXXXXXXXXXXX

1 2 2 31

43

Parallelizing the compression

Fewer number of threads, since the
compressed array has less bytes than the
original

No write conflicts between threads, no
atomic operations needed

Results

10 3 10 2 10 1 100 101 102 103 104

Size (MiB)

100

101

102

103

104

105

106

107

tim
e

(
s)

CPU 6413×Size0.99
GPU (non optimized) 1331×Size0.99
GPU (optimized) 22×Size1
1.4 GiB
1 second

19Mario Gonzalez 28/10/21

~300 times more throughput than
a single CPU core

Checklist update

1 s to compress 1.4 GiB

1 s to copy 1.4 GiB to/from the GPU

20Mario Gonzalez 28/10/21

?

Memory can be directly allocated as pinned (page-locked) in the host

H (Host) = CPU
D (Device) = GPU

21

One order of magnitude
faster than requirements

CPU-GPU data rates

Checklist update

1 s to compress 1.4 GiB

1 s to copy 1.4 GiB to/from the GPU

22Mario Gonzalez 28/10/21

Conclusions

GPUs have a great potential in HEP triggers and
will be part of the future of KOTO

One GPU can perform faster than a whole CPU
server

They are a lot smaller, cheaper and energetically
efficient

23Mario Gonzalez 28/10/21

Hardware
./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA GeForce RTX 3060 Ti"

CUDA Driver Version / Runtime Version 11.4 / 11.4

CUDA Capability Major/Minor version number: 8.6

Total amount of global memory: 7980 MBytes (8367439872 bytes)

(038) Multiprocessors, (128) CUDA Cores/MP: 4864 CUDA Cores

GPU Max Clock rate: 1695 MHz (1.70 GHz)

Memory Clock rate: 7001 Mhz

Memory Bus Width: 256-bit

L2 Cache Size: 3145728 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)

Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total shared memory per multiprocessor: 102400 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 1536

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 2 copy engine(s)

Run time limit on kernels: Yes

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Disabled

Device supports Unified Addressing (UVA): Yes

Device supports Managed Memory: Yes

Device supports Compute Preemption: Yes

Supports Cooperative Kernel Launch: Yes

Supports MultiDevice Co-op Kernel Launch: Yes

Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0

Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.4, NumDevs = 1

Result = PASS

Intel(R) Core(TM)
i7-4770 CPU @ 3.40GHz

CPU

GPU
NVIDIA GeForce
RTX 3060 Ti

