

Radiation Tolerance of Straw-Tracker Read-Out System for COMET Experiment

2 Nov. 2016 Kazuki Ueno(KEK)

Eitaro Hamada^a, Masahiro Ikeno^a, Satoshi Mihara^a, Yu Nakazawa^b, Hajime Nishiguchi^a, Tomohisa Uchida^a, Ye Yang^c, Hiroshi Yamaguchi^c, Hisataka Yoshida^b

> a:KEK, b: Osaka-Univ., c: Kyushu-Univ. IEEE NSS 2016@Strasbourg

Outline

- Introduction
 - COMET experiment
 - Straw tracker
 - Readout system (ROESTI)
- Radiation tolerance
 - Neutron irradiation test
 - Gamma-ray irradiation test
- Summary

Straw Tracker

Requirements

- high momentum resolution <200keV/c@105MeV/c
- Operational in vacuum, high-B (1T), and high radiation

StrECal system

Straw-tube tracker + Electron calorimeter

momentum

Energy, Timing, Hit Position -> Trigger, PID

Readout System for Straw Tracker

Requirements

Timing resolution: < 1ns</th>Position resolution of tracker ~ 100umGain: ~1 V/pCS/N > 10 for Minimum Charge (~16 fC)# of channels: > 16ch# of straw > 2000ch

High intensity, Compact, Operational in high radiation, B-field

ROESTI (ReadOut Electronics for Straw Tube Instrument)

- Develop step by step
- ver.3
- Function works
- Satisfy almost all the requirements
- Need investigation of radiation tolerance

Radiation effect

- Neutron
 - Soft error : Single Event Upset (SEU) and so on
 - -> Investigation of SEU rate

Improvement of FPGA firmware (SEU detection/correction)

- Error Correction Code (ECC), Triple Module Redundancy (TMR), etc...
- Re-download scheme for FPGA
- Hard error : Type inversion and so on
 - -> Parts selection
- Gamma-ray
 - Hard error : Total Ionizing dose (TID) and so on
 - -> Parts selection

Aim of the test

- Measurement of SEU rate on FPGA (Artix7)
- Test of SEU detection/correction function for FPGA firmware
 - Configuration RAM (CRAM)
 - SEM (IP core from Xilinx) was implemented.
 - When UnRecoverable Error (URE) occurred, firmware re-download was automatically done via JTAG line.
 - #s of SEU and URE were recorded.
 - Block RAM (BRAM)
 - Error Correction Code (ECC) using Hamming code (IP core from Xilinx) was implemented.
 - Cyclic Redundancy Check (CRC) was implemented for check of ECC
 - Hamming code and CRC code were added in data. When Multi Bit Errors (MBE) occurred, data was checked in offline.
 - #s of SEU and MBE were recorded.
- Deterioration test

Tandem accelerator @Kobe Univ.

- Mar. and Jul., 2016
- M15 line
- Beam : ~3MeV deuteron
- Target : Be
- Flux : 1.6x10⁶ Hz/cm² @10cm from target $(1 \mu A)$ (including factor 2 of uncertainty)

- LAN Test ROESTI JTAG pulse Media converter DAQ PC
- Data taking of test pulse with 150 Hz trg.
- Counting #s of SEU, URE, and MBE
- Auto firmware re-downloading in case of URE Dependence of n incident angle was also investigated. 10

One example of results (θ =0, d=26 mm)

Firmware functions (SEM and ECC) and auto re-downloading scheme worked. 11

θ	Dista nce [mm]	# of SEU (CRAM)	# of URE (CRAM)	# of SEU (BRAM)	# of MBE (BRAM)	SEU rate (CRAM)	URE rate (CRAM)	SEU rate (BRAM)	MBE rate (BRAM)
0	26	31361	124	8059	11	3.14e7	7.95e9	1.22e8	8.96e10
180	28	50499	254	12031	25	2.50e7	4.96e9	1.05e8	5.04e10
180	53	17483	55	4392	3	1.89e7	6.00e9	7.51e7	1.10e11
90	58	17211	114	3448	6	1.95e7	2.94e9	9.72e7	5.58e10

* Rate : # of nutron / # of SEU (URE, MBE)

preliminary

- There was no large dependence of incident angle.
- Assuming Phase-I operation in the worst case, URE will occur every 1 hour. -> Firmware re-downloading scheme is indispensable.
- No fatal hard error was observed after irradiation of 5x10¹² n/cm².
- Abnormal data was rarely seen.
- Both SEM & ECC didn't detect that.
- It was repaired by firmware re-downloading.
- It was found that **this was due to SEU** after investigation with read-back method.

Gamma-ray irradiation test

Aim of the test

- Deterioration test
 - Dead parts in irradiation test using ROESTI ver.2
 - Memory -> Removed in ver.3
 - DAC -> Need parts selection
 - Regulator -> Need parts selection
 - SFP -> Need parts selection
 - New parts in ver.3
 - ADC -> Need deterioration test

Gamma-ray irradiation test

RI Center

@Tokyo Institute of Technology

- Jun. and Oct., 2016
- Src : Co-60
- Dose : 191Gy/h@40cm

Targets

DAC

- AD5324, AD5624, AD5624R, DAC7564, DAC7565
- Regulator - LT3086, LMZ10503 ADC - LTC2264

Setup

- DAC & Regulator
- Output Voltage was recorded by logger.
 ADC
- Output signal was taken by Oscillo. DAQ.

Gamma-ray irradiation test

Results

- DAC
 - AD5324 : Available although slightly change was seen
 - AD5624 : dead
 - AD5624R : dead
 - DAC7564 : dead
 - DAC7565 : dead
 - -> Evaluation of ROESTI performance with slight change of DAC output will be done.
 - Other candidate will be also searched.
- Regulator
 - LT3086 : Available although slightly change was seen
 - LMZ10503 : good
 - -> Individual specification will be investigated.
- ADC
 - LTC2264: good
 - -> Individual specification will be investigated.

Summary

- COMET experiment @J-PARC is aiming for mu-e conversion search.
- StrECal system is being developed.
- Development of Straw readout (ROESTI) is ongoing.
- Radiation tolerance of ROESTI is ongoing.
 - Firmware functions for SEU(SEM, ECC, CRC, Firmware redownload) worked.
 - URE rate was estimated to 1/1hour in worst case.
 - Hard error was not seen after neutron irradiation.
 - Parts selection with gamma-ray irradiation is ongoing.

Future

- Fix parts selection.
- Improve SEU detection/correction function (TMR, DPR) if needed.
- Construct final version of ROESTI after fixing parts selection.

(ReadOut Electronics for Straw Tube Instrument)

prototype ver.3

