

J-PARCハドロン実験における 連続読み出しDAQ用主回路, AMANEQの開発

Outline

- Introduction
- Design of AMANEQ
- Result of performance evaluation
- Firmware development status
- Summary

KEK素核研^A, Open-It^B, 理研^C

本多良太郎^{A, B}, 池野正弘^{A, B}, 庄子正剛^{A, B}, 髙橋智則^C

Introduction

Introduction, J-PARC E50 experiment

Motivation

• Reveal the effective degree of free of the baryon internal structure, the di-quark correlation, by introducing heavy (*c*) quark.

Strategy

- Missing spectroscopy via the $\pi^- p \rightarrow D^{*-} Y_c^*$ reaction.
- Measure production cross and decay branching ratio simultaneously.

The experimental setup at J-PARC high-p beamline

Secondary π^- beam

- 20 GeV/c
- 30 MHz (60 M/spill)
 - (2s duration)

Target

• Liquid H₂, $4-g/cm^2$

Reaction Charmed-baryon production • ~1 nb/sr Background reaction • 2.4 mb/sr Total reaction rate • 1.5 MHz Charged-particle multiplicity

Requirement from E50

Momentum analysis is essential to reduce the trigger rate to the acceptable (~10kHz) rate.

Other physics program at this beam line

Λp scatteringΞ* spectroscopyPion-induced Drell-YanI=3 dibaryon searchThe required trigger condition are different.

The DAQ system must be flexible and scalable. Omit the hardware (FPGA) based trigger, and introduce the trigger-less data-streaming-type DAQ system.

FairMQ +

• Process monitor and control via inmemory type DB.

The clock/timing distribution will be

Total data rate: ~12 GB/s (E50 case)

Design of AMANEQ

It plays several roles.

- High-resolution TDC (30 ps)
- Low-resolution TDC (1 ns)
- Clock/timing distribution

Function extendibility by mezzanine card

- Being compatible with that of the hadron universal logic (HUL) module.
 - Open-It project: <u>https://openit.kek.jp/project/HUL/HUL</u>
- High-resolution timing measurement is outsourced to the mezzanine card.

Use speed grade -2 FPGA and adopt SiTCP-XG

High speed data link

• Maximum data rate will be 4 Gbps/board

Large buffer

• Prevent from data drop due to the TCP retransmission.

Use DDR3-SDRAM

AMANEQ

A main electronics for network oriented trigger-less data acquisition system (AMANEQ)

- VME 6U size but it doesn't have VME bus
 - VME crate without the power is used as a housing box
- Kintex7 with speed grade -2
 - Transceiver bandwidth up to 10Gbps
 - Can implement SiTCP-XG
- Main input ports compatible with HUL
- Has two mezzanine slot
 - Compatible with HUL
 - Mount HUL mezzanine HR-TDC
 - Mount DCR mezzanine for DC readout
- Belle2 trigger port (master clock)
 - Has a jitter cleaner to clean up the master clock
- DDR3-SDRAM as a de-randomizer
 - DDR3-800 with 16-bit bus width.
 - 2 Gb
 - It allows us to use spill off time for data transfer
- Powered by the external power supply with DC 30-35V

Result of performance evaluation

Data transfer speed via SiTCP-XG

Test setup

Open source consortium of Instrumentati

Throughput of DDR3-SDRAM

Data bus of SDRAM is bi-directional. Memory operation is determined by command.

Tested write/read pattern.

Open source consortium of Instrumentation

Obtained throughput (reference value) **DDR3-800**

- ~4.8 Gbps (6.4 Gbps)DDR3-1333
- ~7.9 Gbps (10.66 Gbps)

***Access to the same memory bank. Larger over head when changing the bank address.

Firmware development status

Heartbeat method for the continuous timing measurement

We need the continuous timing measurement over 2 s (spill duration of J-PARC slow extraction)
Required dynamic range: ~10¹⁰ (1 ns TDC case)

Introduce heartbeat method: a technique to reconstruct the time without a long-length time stamp.

Future prospect

For high-resolution timing measurement

Development of key technologies, HR-TDC, heartbeat method, clock/timing distribution, and high-speed data transmission are almost finished. In future, combine them and test it.

- The trigger-less data-streaming-type DAQ system is introduced in the J-PARC E50 experiment and is shared among the other experiments in the high-p beam line.
 - The total expected data is 12 GB/s for the E50 case.
- A main electronics for network oriented trigger-less data acquisition system (AMANEQ) was developed.
 - Two mezzanine slots, which is compatible with HUL, for the function extension.
 - Two data link with the speed up to 10 Gbps. Realized 10 Gbps TCP communication by SiTCP-XG.
 - 2 Gb DDR3-SDRAM.
- The obtained throughput of SiTCP-XG was 9.12 Gbps. 96% of the TCP payload limit.
- SDRAM throughput was ~7.9 Gbps with DDR3-1333.
- These performance are sufficient for the required data rate of 4 Gbps.
- The heartbeat technique was developed for the continuous timing measurement with a 16-bit time stamp length. It enables us to measure the time over 2s corresponds to the J-PARC spill duration.
- Development of the key technologies are almost finished. Combining them is the future work.

Svstem Group

Resource utilization of SiTCP-XG and transceiver

Target FPGA: XC7K160-2 (Kintex-7)

SiTCP-XG

Name 1	Slice LUTs (101400)	Slice Registers (202800)	F7 Muxes (50700)	F8 Muxes (25350)	Slice (25350)	LUT as Logic (101400)	LUT as Memory (35000)	Block RAM Tile (325)
u_LED_Inst (LEDModule)	<0.01%	<0.01%	0.00%	0.00%	0.02%	<0.01%	0.00%	0.00%
> u_PCSPMA_Inst (ten_gig_eth_pcs_pma)	2.37%	1.60%	<0.01%	0.00%	4.33%	2.28%	0.27%	0.00%
u_RST_Inst (SystemReset)	<0.01%	<0.01%	0.00%	0.00%	0.01%	<0.01%	0.00%	0.00%
> I u_SDS_Inst (SelfDiagnosisSystem)	0.38%	0.39%	0.02%	0.00%	0.97%	0.35%	0.07%	0.46%
> u_SiTCPXG_Inst (WRAP_SiTCPXG_XC7K_128K)	4.81%	4.47%	0.43%	0.13%	9.97%	4.52%	0.82%	21.69%
u_TSD_Inst (TCPsenderXG)	<0.01%	<0.01%	0.00%	0.00%	0.01%	<0.01%	0.00%	0.00%

SiTCP

Name ^1	Slice LUTs (101400)	Slice Registers (202800)	F7 Muxes (50700)	F8 Muxes (25350)	Slice (25350)	LUT as Logic (101400)	LUT as Memory (35000)	Block RAM Tile (325)
✓ N toplevel	8.27%	5.97%	0.36%	0.25%	14.63%	8.08%	0.53%	7.85%
> gen_pcspma[0].u_pcspma_Inst (GbEPcsPmaxdcDup1)	0.54%	0.54%	0.00%	0.00%	1.33%	0.52%	0.06%	0.00%
> I gen_pcspma[1].u_pcspma_Inst (GbEPcsPma)	0.54%	0.54%	0.00%	0.00%	1.29%	0.52%	0.06%	0.00%
gen_SiTCP[0].u_gTCP_inst (global_sitcp_manager)	0.00%	<0.01%	0.00%	0.00%	<0.01%	0.00%	0.00%	0.00%
> gen_SiTCP[0].u_SiTCP_Inst (WRAP_SiTCP_GMII_XC7K_32K)	3.16%	2.03%	0.16%	0.13%	5.03%	3.11%	0.16%	3.54%
gen_SiTCP[1].u_gTCP_inst (global_sitcp_manager_1)	0.00%	<0.01%	0.00%	0.00%	<0.01%	0.00%	0.00%	0.00%

SiTCP-XG

Utilization	Name	Clocks (W)	Signals (W)	Data (W)	Clock Enable (W)	Set/Reset (W)	Logic (W)	BRAM (W)	Clock Manager (W)	MMCM (W)	I/O (W)	GTX (W)	GTX (W)
 1.158 W (84% of total) 	N toplevel												
> 0.571 W (42% of total)	u_SiTCPXG_Inst (WRAP_SiTCPXG_XC7K_128K)	0.065	0.064	0.063	<0.001	0.001	0.045	0.397	<0.001	<0.001	<0.001	<0.001	<0.001
> 0.447 W (33% of total)	u_PCSPMA_Inst (ten_gig_eth_pcs_pma)	0.032	0.011	0.01	<0.001	0.001	0.01	<0.001	<0.001	<0.001	<0.001	0.394	0.394
> 🔲 0.107 W (8% of total)	<pre>u_ClkMan_Inst (clk_wiz_sys)</pre>	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.101	0.101	0.005	<0.001	<0.001
> 0.02 W (1% of total)	■ u_SDS_Inst (SelfDiagnosisSystem)	0.005	0.005	0.004	<0.001	<0.001	0.003	0.004	<0.001	<0.001	<0.001	<0.001	<0.001
> 0.008 W (1% of total)	u_FMP_Inst (FlashMemoryProgrammer)	0.005	0.001	0.001	<0.001	<0.001	0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001

SiTCP

Utilization	Name	Clocks (W)	Signals (W)	Data (W)	Clock Enable (W)	Set/Reset (W)	Logic (W)	BRAM (W)	Clock Manager (W)	MMCM (W)	I/O (W)	GTX (W)
 0.891 W (82% of total) 	N toplevel											
> 0.263 W (24% of total)	gen_pcspma[0].u_pcspma_Inst (GbEPcsPmaxdcDup1)	0.01	0.002	0.002	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	0.249
> 0.263 W (24% of total)	I gen_pcspma[1].u_pcspma_Inst (GbEPcsPma)	0.01	0.002	0.002	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	0.249
> 🔲 0.124 W (11% of total)	u_ClkMan_Inst (clk_wiz_sys)	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.118	0.118	0.005	<0.001
> 🔲 0.095 W (9% of total)	I u_GtClockDist_Inst (GtClockDistributer2)	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.095	0.095	<0.001	<0.001
> 🔲 0.055 W (5% of total)	gen_SiTCP[1].u_SiTCP_Inst (WRAP_SiTCP_GMII_XC7K_32K_0)	0.026	0.01	0.009	<0.001	<0.001	0.009	0.01	<0.001	<0.001	<0.001	<0.001
> 0.054 W (5% of total)	gen SiTCP[0].u SiTCP Inst (WRAP SiTCP GMII XC7K 32K)	0.026	0.01	0.01	<0.001	<0.001	0.009	0.01	<0.001	<0.001	<0.001	<0.001

001

Electronics System Group