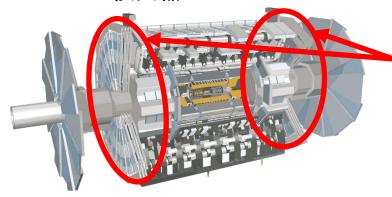
高輝度LHC-ATLAS 実験に向けた TGC 検出器トリガーにおける 前段回路試作機の動作検証

<u>皆川真輝^{A,B}</u>、戸本誠^{A, B,C}、堀井泰之^{A,B}、加納勇也^{A,B}、山田敏大^{A,B}、佐々木修^{B,C}、田中真伸^{B,C}、宮原正也^{B,C}、池野正弘^{B,C}、庄子正剛^{B,C}、田内一弥^{B,C}、他ATLAS 日本トリガーグループ

名大理A、Open-ItB、KEK素核研C

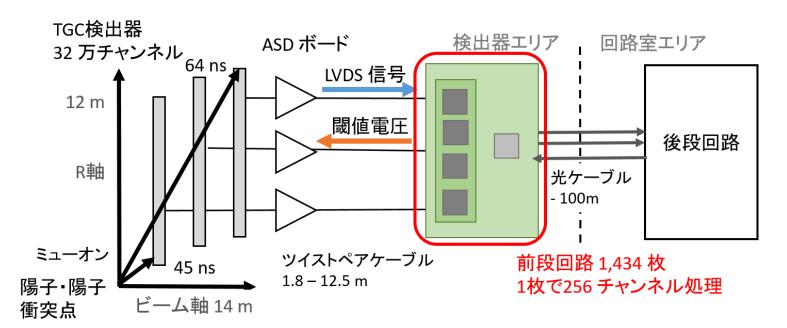

日本物理学会第76回年次大会

はじめに

高輝度LHC-ATLAS実験

- 2027年からLHC加速器を高輝度化する。
- 瞬間ルミノシティが現行の2.5倍以上に増強される。 $(5-7.5\times10^{34}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ に到達予定)
- → ATLAS実験でのトリガー・読み出し回路の改良が要請される。

ATLAS検出器



Thin Gap Chamber (TGC)

- エンドキャップ部トリガー用ミューオン検出器
- トリガー回路の刷新を行う。

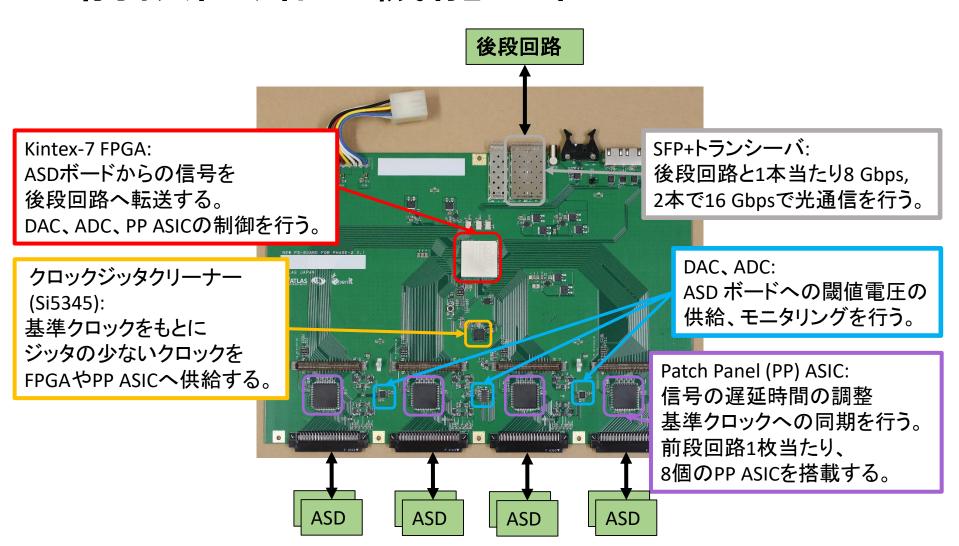
新たなTGCトリガー回路

TGC全ヒット情報をもとに高速飛跡再構成

ASDボード

- TGC検出器信号の 増幅・成形・弁別

前段回路


- 信号を基準クロックへ同期
- 信号を後段回路へデータ転送
- ASDボードへ閾値電圧の供給

後段回路

- ミューオン飛跡を再構成
- 横運動量をもとにトリガー (14pT3-10 小林蓮 14pT3-11 三森由暉)

日本物理学会第76回年次大会

前段回路の機能と素子について

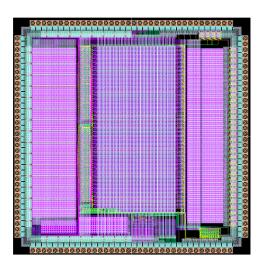
日本物理学会第76回年次大会

前段回路の開発タイムライン

2018 2019 2022 2025 2020 2021 PP ASIC 試作機 製作•検証 PP ASIC 量産品 量産•品質試験 前段回路第1試作機 前段回路 PP ASIC 量産品 製作•検証 第1試作機 前段回路第2試作機 製作•検証 前段回路最終機 本発表 量産•品質試験

インストール

PP ASIC: 概要


構成要素	機能	仕様
可変遅延回路	TGCからの信号のチャンネル間の 遅延時間の補正を行う。	刻み幅:<1 ns ダイナミックレンジ: >40 ns
陽子•陽子交差識別回路	基準クロック(40 MHz)と信号を同期 させ、 陽子交差に割り当てる 。	有効ゲート幅: 25 - 49 ns
テストパルス生成回路	テストパルスをASDボードへ発行し、 回路系の動作試験 を行う。	波高: 60 mV - 2.8 V 幅: 25 ns - 102.4 μs

その他の仕様

- プロセス: Silterra 0.18 µm CMOS
- チャンネル数: 32 チャンネル

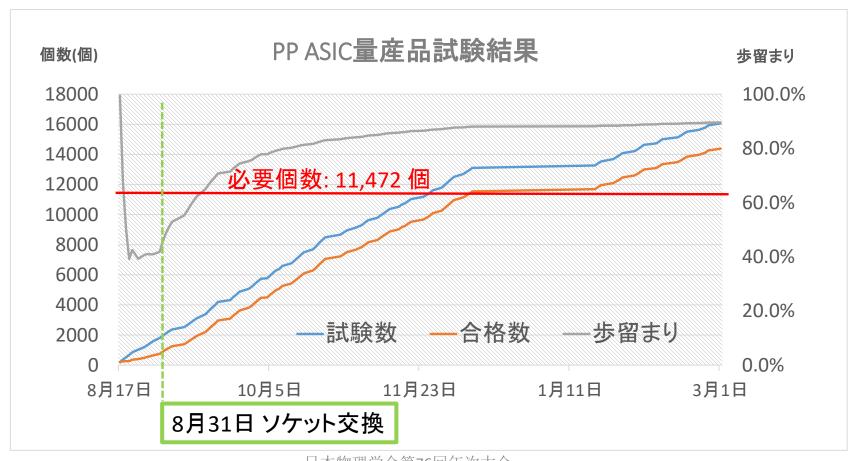
(16 チャンネル×2)

- 供給電圧: 1.8 V (一部で 3.3 V使用)
- 消費電力: ~75 mW

PP ASIC $(2.5 \text{ mm} \times 2.5 \text{ mm})$

PP ASIC: 量産品試験について

- FPGA搭載のテストボードを用いた自動品質試験システムを構築した。
- FPGAでPP ASICに対する信号送受信とPCに対するデータ送受信を行う。
- 1個あたり40-80 秒で試験が実行可能である。 (日本物理学会2020年9月山田16pSF-6)

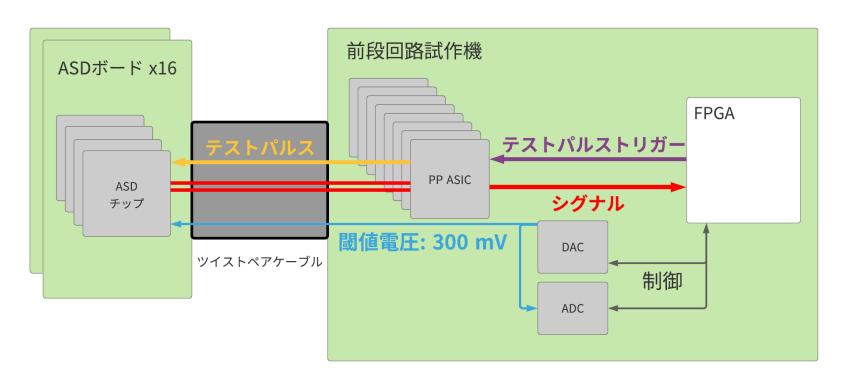

テスト項目

- 全SPIレジスタ
- 全チャンネル入出力
- 遅延制御回路
- 可変遅延回路
- 陽子バンチ識別回路
- テストパルス回路
- 消費電力

PP ASIC: 量產品試験結果

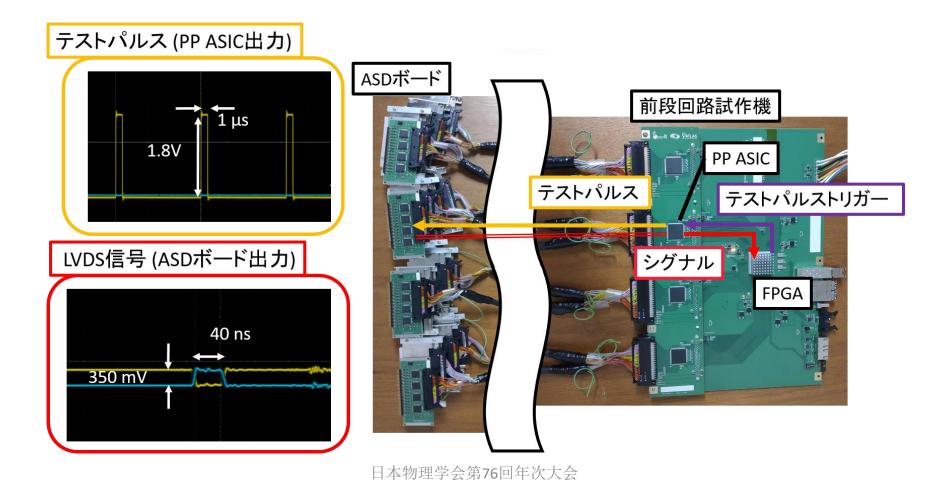
- 全チップ25,000 個に対しての自動品質試験が2020年8月から開始された。
- 16,054個のPP ASICの試験を行い、14,375個の合格を確認した。(2021年2月現在)
- 実機で必要な個数を確保した。(必要個数: 11,472 個)
- 一部期間でソケットの不良による歩留まりの悪化が見られたが、改善済である。

日本物理学会第76回年次大会

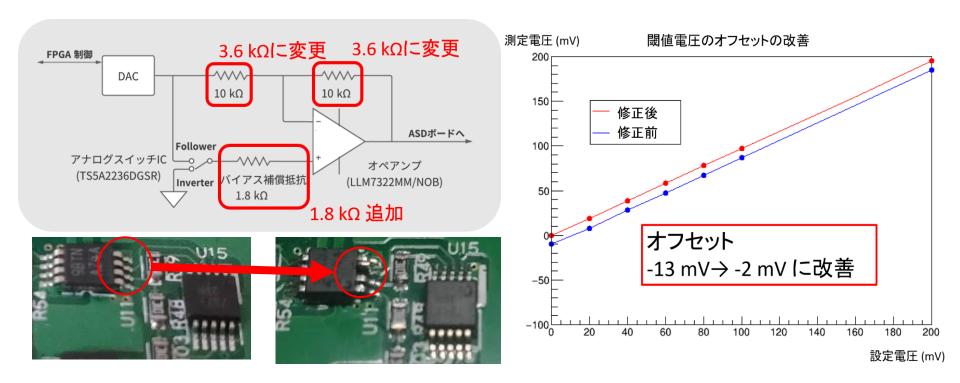

前段回路: 動作検証試験

- ・前段回路第1試作機が2020年9月に納品された。
- 全ての項目で、基準の機能を満たすことを立証した。
- ・閾値電圧供給回路に関して、改良点を明らかにした。
- ・ 改良点をもとに、前段回路第2試作機を製作した。

試験項目	結果
FPGA初期化•回復機構	✓
ASDボード接続試験(次ページ以降説明)	✓
クロックジッタークリーナー	✓
PP ASIC	✓
SFP+トランシーバー	✓
<u>閾値電圧供給回路(DAC,ADC)</u> (次ページ以降説明)	✓ (改良の余地有り)
消費電力	✓


ASDボード接続試験セットアップ

- ASDボードと前段回路試作機を接続し、データパスを検証した。
- PP ASICからのテストパルスをもとに、 ASDボードからのLVDS信号をFPGAで検知出来るかを確認した。
- また、それぞれの信号の状態(波高、幅、波形、タイミング)を確認した。


ASDボード接続試験結果

- 設定や規格に準じた信号がやりとりされていることを確認した。
- ASDボードからのLVDS信号をFPGA上のチップスコープで検知できた。

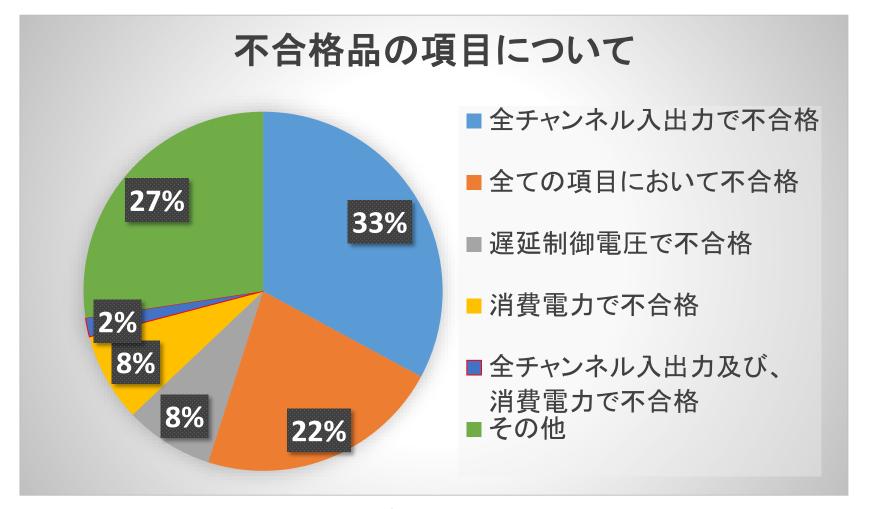
閾値電圧供給回路の改良点

- オペアンプのバイアス電流に起因する、-10 mV程のオフセットが存在した。→抵抗値を変更し、バイアス補償抵抗を付け加えた。
- 第1試作機で検証し、オフセットの改善を確認した。
- この改良により、閾値電圧値の設定の利便性の向上をさせた。

まとめ

高輝度LHC-ATLAS実験に向けたTGC検出器トリガーにおける前段回路開発のために検証を行った。

前段回路搭載PP ASICの量産品検証

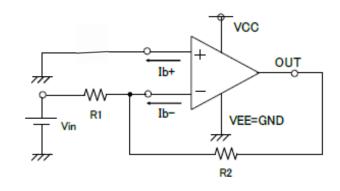

- 14,375個 / 16,054個の合格を確認した。(2021年2月現在)
- ・ 実機で必要な個数を確保した。(実機で必要な個数: 11,472 個)

前段回路の試作機試験

- 全ての項目で、基準の機能を満たすことを立証した。
- ・改良点を明らかにし、第2試作機を製作した。(2021年2月納品)

Back up

PP ASIC: 不合格品

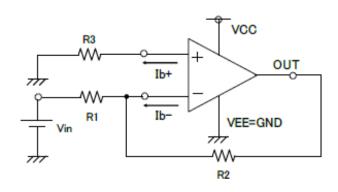

(各項目については排他的に個数を計上している。)

日本物理学会第76回年次大会

入力バイアス電流について

- ・ オペアンプの入力端子に入出力する電流
- バイポーラタイプのオペアンプでは主に入力段のトランジスタに流れるベース電流が要因
- 入力バイアス電流が存在するときは

$$V_{\text{out}} = -\frac{R_2}{R_1}V_{\text{in}} - R_2Ib^-$$


• ここにバイアス補償抵抗R3をオペアンプの+入力端子に加えると、

$$V_{\text{out}} = -\frac{R_2}{R_1}V_{\text{in}} - \left(1 + \frac{R_2}{R_1}\right) \left[\left(\frac{R_1 \cdot R_2}{R_1 + R_2} - R_3\right) Ib - \left(\frac{R_1 \cdot R_2}{R_1 + R_2} + R_3\right) \frac{I_{\text{io}}}{2} \right]$$

$$(\Box \Box CIb = \frac{Ib^{+} + Ib^{-}}{2}, I_{io} = Ib^{+} - Ib^{-}$$

 I_{io} : 入力オフセット電流、+/- 端子のバイアス電流の差)

・
$$R_3=rac{R_1\cdot R_2}{R_1+R_2}$$
とすることで、バイアス電流の影響をキャンセルできる $V_{
m out}=-rac{R_2}{R_1}V_{
m in}+R_2I_{
m io}$

