17aK209-11

高輝度LHC-ATLAS実験に向けた TGC検出器の前段読み出し回路の 放射線対策

名古屋大学理学研究科 **稲熊勇人^{A,B}**

戸本誠^{A,B}, 堀井泰之^{A,B}, 川口智美^{A,B}, 伊藤秀一^{A,B}, 麻田晴香^A, 佐々木修^{B,C}, 田中真伸^{B,C}, 内田智久^{B,C}, 宮原正也^{B,C}, 池野正弘^{B,C}, 他ATLAS日本トリガーグループ

名大理^A, Open – It^B, KEK素核研^C

日本物理学会第74回年次大会 @九州大学

高輝度LHC-ATLAS実験とトリガー・読み出しシステム改良の概要

- Large Hadron Collider (LHC)
 CERNの陽子陽子衝突型加速器
 40 MHzで陽子バンチ交差
- ・高輝度LHC-ATLAS実験(2026~)
 重心系エネルギー
 - $\sqrt{s} = 14 \text{ TeV}$
 - 瞬間最高ルミノシティ
 - L = 5 7.5 \times 10³⁴ cm⁻²s⁻¹

膨大なデータ中から興味のある 事象を選別する"**トリガー**"が重要

	LHC	高輝度LHC
トリガーレート	100 kHz	1 MHz
判定時間	2.5 μs	10 µs

トリガー読み出しシステムを刷新し、 処理レート・判定時間を増強する

エンドキャップミューオントリガーの回路

TGC全32万チャンネルの信号を用いてトリガー判定を行う

1. ASDボード

検出器からの信号を弁別する

2. PSボード TGC検 飛行時間(45 ns ~ 64 ns)、 ケーブル長(1.8 m ~ 12.5 m)に由来する 信号の遅延を調整し、基準クロックへの 同期を行う(陽子バンチ識別) また光通信でトリガー回路へ 高速転送(1ファイバーあたり8 Gb/s)を行う
3. トリガー回路

飛跡を検出し、横運動量を計算し、

トリガー判定を行う

ATLAS検出器エリア 回路室 TGC検出器 PSボード トリガー の路

PSボードへの要求 1. 1 ns以下の刻みで遅延調整を行う

2. 高輝度LHCで要求される放射線耐性を持つ

PSボード開発のための素子の開発、選定及び それらの放射線耐性、対策を考える

PSボードに安定電圧を供給する

本講演では以下の結果を示す

信号を後段回路へ転送する

1. PP ASIC試作機の動作確認

1. Patch-Panel (PP) ASIC

への同期を行う

2. DAC & ADC

4. 電源素子

- 2. 各素子の放射線耐性の確認
 - 2.1. 各素子のガンマ線照射試験

信号の閾値電圧を供給、測定する

3. FPGA (Kintex-7 XC7K325T-2FFG900C)

2.2. FPGAのSingle-Event Upset (SEU)対策

高輝度LHC-ATLAS実験に向けて 製作されたPSボード試作機 高速転送機能、クロック供給機能は確認済み 放射線耐性の確認が必要

日本物理学会2017年3月宿谷 20pA12-9 日本物理学会2018年3月伊藤 23aK205-1

2019/3/17日本物理学会第74回年次大会

高輝度LHC-ATLAS実験でのPSボード

PP ASIC及び評価ボードの概要

- ・現行のPP ASICにはスペアチップが十分に存在しなく、当時使用した製造プロセスが存在しないため、新しいASICを開発する必要がある
- ・Phase Locked Loop (PLL)を用いた可変遅延回路を搭載し、

1ns刻みで安定した遅延調節を可能にし、基準クロックへの同期を行う(バンチ識別)

PP ASIC評価ボード

 PLLは、温度・電圧変化に対して安定した遅延時間を実現

 2018年に、試作機を製作し、性能を評価した

 2019/3/17日本物理学会第74回年次大会

 5/11

ボード上には回路制御のデバイスを搭載せず ガンマ線照射でも使用できるようにした

PP ASIC 試作機の性能評価

テストした19個のPP ASIC試作機で全チャンネル期待通りの動作を確認 例として48段階の遅延調節が可能である可変遅延回路の性能評価結果を示す

1ns以下の遅延調節が可能であり、電圧及び温度依存が小さいことを確認

6/11

2018年12月に実機25000個のチップの製作を開始 2019年3月に37枚のウェハ製造完了

2019年中に全チップの基礎動作試験を行う予定

2019/3/17日本物理学会第74回年次大会

製造された ウェハ

ATLAS検出器エリアでの放射線量の見積もり

- ・積分ルミノシティが4000 fb⁻¹の時のTotal Ionizing Dose (TID)は6 Gy 安全係数を考慮したとき要求値は180 Gy (商用素子), 27 Gy (ASIC)
- ・ルミノシティ7.5×10³⁴ cm⁻²s⁻¹の時の20 MeV以上のハドロンのフラックスは $9.8 \times 10^2 \text{ cm}^{-2} \text{s}^{-1}$ Single Event Upset (SEU) のレートはTGCシステム全体 (Kintex-7 FPGA 1500枚) で 10^{-1} s⁻¹オーダー 2019/3/17日本物理学会第74回年次大会

TID耐性試験のセットアップ

名古屋大学コバルト60照射室にてガンマ線を照射し、TID耐性を評価した

PP ASIC, DAC, ADC, 電源素子に対して照射を行なった 照射レートは0.45-8.2 Gy/min(写真は0.91 Gy/minの時)

TID耐性試験の結果

素子	素子名	動作可能線量	要求	試験枚数
PP ASIC		>20000 Gy	27 Gy	5枚
DAC	DAC7678	180 Gy	180 Gy	5枚
ADC	ADS7953	246 Gy	180 Gy	5枚
電源素子	TPS7A85	379 Gy	180 Gy	9枚
電源素子	TPS6050	80 Gy	180 Gy	1枚

9/11

(動作可能線量は、複数枚の耐久試験で最も短命だったものの値)

TPS7A85: Low Drop Out TPS6050: DC/DCコンバータ

- ・TPS6050を除く全ての素子で要求値を 満たすことが確認された
- ・上の素子の選定が完了した

2019/3/17日本物理学会第74回年次大会

例:電源素子TPS6050の照射結果

 ATLAS検出器エリアに試作機を置き試験を行った (日本物理学会2018年9月稲熊 14pS13-4)
 12.6 fb⁻¹で16回のSEUを観測
 SEU数は断面積から見積もられる値とオーダーで一致 (M. J. Wirthlin et al. 2014 JINST 9 C01025)
 観測したのは全て1ビットエラーで自動修正に成功
 SEM controllerが有効なSEU対策手段であることを立証 2019/3/17日本物理学会第74回年次大会

SEU観測数

まとめ

- ・高輝度LHC-ATLAS実験に向けて、ミューオン検出器TGCを用いた ハードウェアトリガーの刷新が計画されている
- ・PSボードに関する以下の結果を示した
 - 1 ns以下の遅延調節ができる新たなPatch-Panel ASIC試作機を製作し、 19台の性能評価を完了させ、2018年12月に25000個の量産を開始した
 - 4素子に対してガンマ線を照射し、TID耐性の要求

(商用素子: 180 Gy, ASIC: 27 Gy) を満たすことを確認した

- ATLAS検出器エリアにSEM controllerを実装したPSボード試作機を配置し 12.6 fb⁻¹で16回のSEUを観測し、全てのエラーを自動修正することに 成功した
- ・PSボード試作機の回路図を書く準備が整った