マルチピクセルAPDを使った陽電子検出器の開発 とJ-PARC MLF のミュオン実験装置への導入 How to install a µSR spectrometer

in two years from the scratch

小嶋健児

(KEK物構研/J-PARC MLFミュオン, Open-It) 2012.11.5 計測システム研究会@東大本郷

outline

- 最終目的:ミュオンスピン緩和(µSR)分光器 5page
- ハードウェア&ソフトウェア
 - ASIC-アナログボード
 - FPGA-デジタルボード
 - データ収集システム

• まとめ

● コミッショニングの結果と問題点

5page

20page

Where is J-PARC

J-PARC=Japan Particle Accelerator Research Complex

J-PARC MLF neutron and muon BLs

Standard set-up of μ SR

µSR分光器增強計画

J-PARC D-line: ~180k/pulse/300kW μ⁺ for open geometry 180k×0.8%/16=90e⁺/pulse/counter or 24ns sep. ~10k/pulse/200kW for Φ15mm sample size 10k×0.8%/16=5e⁺/pulse/counter or 400ns sep.

Technology element (I): Avalanched Photo Diode

MPPC(Multi Pixel Photon Counter)

Technology element (2): Front-end circuit & ASIC

10

2ch prototype:VOLUME-1 in 2010

VOLUME-2011 beam test @ RIKEN/RAL (2011.10.18)

single ch002

8290

540

220

Entries

Mean

RMS

Kalliope ver I.I installed model in 2012 using VOLUME-2011

14

シンチボードとアナログボードの間:Ich毎に同軸線で接続 '

上流と下流のカウンターセット(6boards×2=12boards 384ch)¹⁷

GNDed Al-mylar for noise shield

2012.07.09: Check of grounding and shield @ D1/J-PARC¹⁹

2012.07.09: result of grounding and shield @ D1/J-PARC²⁰

J-PARC µSR分光器(DΩ-I)の増強:2012.10.15

21

検出器立体角が8%→20%に増強 この秋からコミッショニング

Kojima@muon Takahashi@muon

on-chip ヒットカウンタ

各フェーズのカウント数をスローコントロールレジスタに書き出す。 プリセットトリガー数を設定して積分カウント値も書き出す。 →DAQなしに陽電子カウントを測定できる。

→カウント数を使った自動閾値調整(bash shell script + c-code)も完成

22

汎用NIMモジュール化TDCの製作(3")

デジタルボードをNIM入力化

+深尾祥紀(IPNS)、神田聡太郎(東大理) 鈴木 聡(CRC)、内田智久(IPNS)、田中真伸(IPNS)

32chNIMinTDC約20万円+10万円 CAMAC LeCroy 3377の後継となるか? **OpenIT** collaboration

最初の4台が2012.06.07納入済。 動作確認済。

- •NIM入力化したことで、集密度は下がるが 使いやすくなった。
- プログラマブルNIM入出力端子付き
- **OpenIT**ブランドで売り出し中。

コミッショニング:Kalliope最初のµSRデータ:2012.10.20²⁵

FPGA由来の4ns問題:未解決

謝辞

KEK物構研ミュオン:幸田章宏,高橋義知,宮崎正範,平石雅俊,門野良典
KEK素核研g-2グループ:深尾祥紀,神田聡太郎,齊藤直人
KEK計算センタ(DAQ): 鈴木(山形)聡
KEK素核研先端計測
(ASIC設計・テスト): 田中真伸,村上武
(FPGAオリジナルコード): 内田智久
(ボード設計): 池野正弘,斉藤正俊

このプロジェクトはOpen-Itの枠組みで可能になりました。

ディスカッション:本多さん(東北大),松本さん,佐藤さん(阪大), 吉村さん(KEK素核研),瀬谷さん,岸本さん(KEK物構研)・・・ 29

まとめ

- •マルチピクセルAPDを使った陽電子検出器の作成
 - キッカーノイズ退治成功
 - •4ns問題はまだある。

- ASIC: VOLUME2011を使って32×12台=384chをJ-PARC/MLFインストール
- ミュオンビームを使ってコミッショニング中

Kalliope vI.I

•レート耐性(目標の~I/5)とスペクトル歪みは調整中だが、稼働し始めた。

What's next?

- •U-line 超低速µSR分光器(~2kG, low rate)
 - •Kalliope vI.Iでおそらく大丈夫
 - VOLUME-2012が使えれば吉

FY2012

- •S-line 汎用µSR分光器(~4kG, middle rate, ~1000ch class) •VOLUME-2012が必須。 FY2013
- D-line高磁場µSR分光器(~5T, focused high rate, ~2000ch ?) •小さいシンチ? FY2013-2014
 - Si-strip?

