

2015/7/25

J-PARC E16実験におけるGEM検出器のトリガーシステムの開発

小原裕貴 (東京大学)

Contents

- Introduction
 - J-PARC E16実験
 - E16 spectrometer
 - DAQ and Trigger system
- * Trigger of GEM Tracker
 - Development of ASIC
 - Trigger Merger Board
- Summary & Outlook

J-PARC E16 実験

- high-p beam line
 - J-PARC MRから1次陽子ビームの一部を取り出す
 - proton : Max. 30 GeV 10¹⁰ / sec
- Key words
 - High precision
 - High statistics
- 電磁石が組み上がったところ

E16 Spectrometer

- Beam
 - proton, high intensity (~10¹⁰ Hz)
- Target
 - C, Cu, Pb, CH₂
- GEM tracker
 - tracking detector
 - mass resolution ~ $5 \text{ MeV}/c^2$
- Hadron Blind Detector
 - electron identification
 - hadron rejection factor ~ 100
 - efficiency ~ 70%
- Lead Glass
 - electron identification
 - hadron rejection factor ~ 20
 - efficiency ~ 90%

DAQ & Trigger system

- Level-1 trigger
 - GTR300 (624 ch) × HBD(936 ch) × LG(988 ch) のtrigger segmentの3 coincidence
 - $e^+e^-\mathcal{O}$ opening angle > 60°

Trigger system of GEM Tracker

2 Labe

GEM Tracker

- Drift gapに荷電粒子の通過による電離電子が生じる
- ・ GEM3枚で電子を約104倍に増幅する
- ・ 増幅された電子が2D Readoutに落ちることで信号が得られる → tracking
- Induction gapでの電子のドリフトは3枚目のGEMの裏側にも信号を生成する → trigger

ltrig

Trigger of GEM Tracker

* Cathode側 (3枚目GEM foilの裏側) から信号を用いる

ASICにする理由

- ・既存のプリアンプではfoilのsignalを読み出せても、noiseが大きいおよびpulse幅が大きい
- •ASICの低ノイズ性
- ・triggerのch総数:624ch
- プリアンプボードの小型化

ASICの要求性能・仕様

- 大検出器容量に対応: C_{det} = 2 nF (GEM 1 segmentあたり)
 - strip $\mathcal{O}C_{det} = 50 \text{ pF}$
- 集積度:6ch/chip(消費電力による制限)
- 構造: Amp, Shaper, and Discrim.
- Analog pulse width : 200 ns (shaper time constant = 25 ns)
- 10fCの相当の信号に対してS/N~3
- Thresholdは外部から各ch制御できる

ASIC開発の流れ

ASICの回路設計

- schematicのシミュレーションを走らせる
 - 過渡応答でgain, pulse width
 - noise の大きさ
 - slow controlでregisterに値を書き込めるか
- schematicの修正 -> ASIC のレイアウト
- Process : MXIC 0.5 um

- できあがったchipとそのテストボードで性能評価
 - テストボードには負荷容量相当および発振防止用のコンデンサ1 nF
- 10fCおよび100fCのテストパルスに対するアナログ出力波形
- conversion gain : 3.2 mV/fC (sim. : 3.6 mV/fC)

Digital control (SLOW)

- クロック、ビットパターンの入力によるデジタル制御ができていることを確認
 - コンパレータon/off
 - デジタル出力の極性
 - 各chのlocalなthresholdの調整(DACの制御)

Trigger board

- テストボードでASICの性能を確認
 - Analog part (waveform, noise and gain)
 - Digital part (register control, output)
- GEM Tracker実機につなぐTrigger boardを試作
 - KEL-XSL connector (極細同軸ケーブル)
 - LVDS driver
- Trigger boardにも入力部に負荷容量相当および
 発振防止用のコンデンサ1 nFをつけている
- Trigger boardの出力は24ch LVDS
 - Trigger board後段のTRG-MRGに送られる

Trigger boardのnoise問題

- テストボードでは見られなかった振幅の大きい遅い周波数成分のnoiseがある
 - $\sigma = 4 \text{ mV} \rightarrow \sigma = 12 \text{ mV}$
- この時点では原因がよくわからなかった
 - LVDS driverを動作させるためにつけたレギュレーター?
 - input側にシールドをしても落ちない

ASIC v2 & test board v2

- v1 に以下の機能を追加
 - 選択的に1chのthresholdをmonitor
 - 選択的に1chのanalog signalをmonitor
- analog特性はv1と変わらない
- テストボードはGEM Trackerに接続できるよう にv1 Trigger boardに似た構造
 - 入力部に2nF負荷容量コンデンサ
 - IC socketでASICの交換を容易にして、ASIC
 の選定の時間を短縮
- GEM foilのsignalを12 ch読み出せる

遅い周波数成分のnoiseの解決

INPUT

- Trigger boardに見られた遅い周波数成分のnoise
 がASIC v2のテストボードでも見られる
- v1テストボードとTrigger boardおよびv2テスト ボードの相違点
 - LVDS driver関連の周辺回路
 - 負荷容量および発振防止用のコンデンサの GNDの取り方 (スルーホールか否か)

入力部のコンデンサを除去

- Trigger boardおよびV2テストボードの遅い周波 数のnoiseが解消
 - スルーホールのGNDを数uV程度で安定させることができず、コンデンサを通して数10fCの電荷が入力されることで振幅の大きい遅い周波数のnoiseが乗っていたと考えられる
- 発振防止用につけていたものを取り除いても発振しなかった

GEM Tracker との接続テスト

Noise Level

- GTR300とASICを接続
 - noise level を check
 - 実際のoperationでは10fC程度に相当する30mVにthresholdを設定する
 - ENC ~ 3.5 (mV) / 3.2 (mV/fC) / 1.6×10^{-4} (fC) = 7000
 - Minimum charge : 6 electrons (seeds) × 10000 (effective gain) = 60000

ASIC v2で読み出した信号

- GEM1枚あたり印加電圧350VでのX線源(55Fe)およびβ線源(90Sr)のfoil signal
 - X線の全吸収ピークの値からeffective gain = 740 程度
 - operation gain = 10000 程度
 - pulse width ~ 400 ns
- これから宇宙線またはbeam testでtrigger efficiencyを評価する予定

Trigger Merger Board (TRG-MRG)

- TRG-MRGの動作
 - LVDSを取り込み、FPGA内に構築したTDCで信号処理 (48×4 = 192 ch, max. 256 ch)
 - Belle-II UT3 (trigger decision module)にTDCデータを高速光通信で送信 (Aurora64b66b)

ASIC v2 テストボードとTRG-MRGの接続

- TRG-MRG boardの実機テスト
 - FPGA以外の部分の動作を確認する
 - Firmware: ASIC 6ch分のALL ORと特定の1chのDOUT levelをNIM OUTで取り出す
- ASICのLVDSが子ボードを通じて親ボードのFPGAまで流れていることを確認
- FPGAの出力がNIM OUTまで信号が流れていることを確認

Summary

- J-PARC E16 実験
 - J-PARC high-p beam line
 - mass spectra of vector mesons in nuclei
- 全体のtrigger system
 - GEM Tracker, HBD, LGOtrigger segment 03 coincidence
- Trigger system of GEM Tracker
 - ASIC
 - ・ analog (noise level, conversion gain, pulse width), digital双方の性能を確認
 - ・ GEM Trackerとの接続テスト (noise評価, 線源のsignal)
 - Trigger Merger Board
 - ASICの載ったボードとの接続テスト
 - ・ 基板のテスト
 - TDC firmware

Outlook

- ASIC
 - v2 Trigger boardの製作
 - 宇宙線 or Beamでtrigger efficiencyの評価
- HBD用ASICのR&D
- TRG-MRG
 - TDC firmwareのデバッグ
 - ASICのslow control用FPGAのfirmware開発
 - UT3との接続テスト
- Trigger Decision
 - Trigger decision logicの開発
- 回路の量産・品質検査