J-PARC高運動量ビームラインにおける チャームバリオン分光実験のデザイン

白鳥昂太郎 for the E50 collaboration Research Center for Nuclear Physics (RCNP)

計測システム研究会 @ RCNP 2015 7/24

Contents

- Physics motivation
- Experiment at J-PARC
 - High-momentum beam line
 - Design of Spectrometer system
- Key devices
 - RICH
 - High-rate detectors
 - DAQ
- Summary

What is a building block of hadrons ?

Constituent Quark

Exotic hadron

q-q correlation (diquark)

Charmed baryon spectrum: "Excitation Mode"

Heavy Quark: Weak color-magnetic interaction \Rightarrow "q-q" isolated and developed: "q-q + Q"

High-momentum beam line Design of Spectrometer system Simulation

J-PARC & Hadron Facility

High-momentum beam line

Construction by 2018 ? Primary proton beam $\Rightarrow 2^{ndary}$ Beam

High-p

Experimental conditions in Hadron hall

- DC 2^{ndary} beam: $10^7 10^8$ Hz, 100×100 mm², $\Delta p/p = 2 3\%$
- Beam measurement is essential.
- Forward scattering by In-Flight reaction

High-momentum beam line for 2^{ndary} beam

- High-intensity beam: > 1.0×10^7 Hz π (< 20 GeV/c)
 - Unseparated beam
- High-resolution beam: Δp/p ~ 0.1%(rms)
 - Momentum dispersive optics method

Experiment

- $\pi^- + p \rightarrow Y_c^{*+} + D^{*-}$ reaction @ 20 GeV/c
 - 1) Missing mass spectroscopy

$$D^{*-} \to \overline{D}{}^0 \pi_s^- \to K^+ \pi^- \pi_s^- : D^{*-} \to \overline{D}{}^0 \pi_s^- (67.7\%), \overline{D}{}^0 \to K^+ \pi^- (3.88\%)$$

- 2) Decay measurement
- Decay particles (π^{\pm} & proton) from Y_c^*

Production cross section

* Assumed production cross section: $\sigma \sim 1$ nb

- π^- + p $\rightarrow \Lambda_c^+$ + D^{*-} reaction @ 13 GeV/c: σ < 7 nb (BNL data)

- High-rate beam & High-rate detector system
 - Beam intensity: 6×10⁷/2.0 sec spill (~1 MHz/mm)

Old experiments

• $\pi^- p \rightarrow \Lambda_c^+ D^{*-}$ @ 13 GeV/c - $N_{\pi} = 3 \times 10^{12}$ - $\Delta M = 20 \text{ MeV}$

★ △p/p < 1 %
★ Acceptance = a few 10%

Design procedure

1) Reaction condition: Kinematics

- Momentum & angular distribution
- Correlations of scattered particles
- Production & decay angle dependences

2) Magnet: Dipole

- Exist magnet or new one
- Gap size: Acceptance
- Magnetic field: Bending power

3) Detector

- Detector choice
 - Size: Acceptance
 - Time & position resolution
 - Configuration: Layer, segment
 - Counting rate per segment: Beam through
- PID type

4) Performance study

- Momentum resolution: Material thickness
- Invariant & missing mass distribution
- Target energy loss struggling & multiple scattering
- PID performance
- 5) Realistic magnet and detector design
 - Full simulation
 - Detector R&D, Readout modules, cabling

Size, Layer, Segment, Thickness, Shape

Fast or Slow bending,

Gap size, Magnet shape

Beam momentum

& target change

Feedback to whole procuress \Rightarrow Minor changes

- Primitive design \Rightarrow 1) Kinematics & 2) Magnet
- Magnet: Toy magnet

- 2-arm design \Rightarrow 2) Magnet
- Magnet: Super-BENKEI

- 2-arm design \Rightarrow 2) Magnet
- ・ Magnet: Super-BENKEI ⇒ すでに破棄!

- 2-arm design \Rightarrow 2) Magnet
- Magnet: FM magnet (E16 will use at High-p BL.)

- Single arm design ⇒ 3) Detector & 4) Resolution
- Magnet: FM magnet

- High-rate beam & High-rate detector system
 Beam intensity: 6×10⁷/2.0 sec spill (~1 MHz/mm)
- Dipole-magnet spectrometer
 - High-resolution: $\Delta p/p < 1\%$

- High-rate beam & High-rate detector system
 Beam intensity: 6×10⁷ /2.0 sec spill (~1 MHz/mm)
- Dipole-magnet spectrometer
 - High-resolution: $\Delta p/p < 1\%$

- High-rate beam & High-rate d
 Beam intensity: 6 × 10⁷ /2.0 sec si
- Dipole-magnet spectrometer
 - High-resolution: $\Delta p/p < 1\%$

Charmed baryon spectrometer

Large Acceptance Multi-Particle Spectrometer

- Acceptance: ~50% for D^{*}, ~80% for decay π/p
- Mass resolution: $M_{Ac^*} = 10 \text{ MeV}(\text{rms}) @ 2.7 \text{ GeV/}c^2$

Charmed baryon spectrometer

27

Large Acceptance Multi-Particle Spectrometer

- Acceptance: ~50% for D^{*}, ~80% for decay π/p
- Mass resolution: $M_{Ac^*} = 10 \text{ MeV}(\text{rms}) @ 2.7 \text{ GeV/}c^2$

Background spectra @ 20 GeV/c

Background = Signal × 10^6

* Both \overline{D}^0 mass and Q-value region selected by narrow gate

Background reduction: D* tagging

* Both \overline{D}^0 mass and Q-value region selected by narrow gate \Rightarrow More than 10⁶ reduction for background events

Expected spectra

Known Mass & Width in PDG

~2000 counts @ N_{pot} = 8.64 × 10¹³ (100 days, ε_{total} = 0.5)

- $\Lambda_c(g.s.)$: **1** nb production cross section
 - Production ratio for excited states
- Background level and reductions were precisely studied.

* Achievable sensitivity of 0.1–0.2 nb: $(3\sigma \text{ level}, \Gamma < 100 \text{ MeV})$

Key devices RICH High-rate detector DAQ

Requirements

- Small production cross section of $\pi^- p \rightarrow Y_c^{\ *} D^{*-}$
- \Rightarrow High-rate beam
 - 6×10⁷ /spill (30 MHz)
- * High-rate detectors
- Huge background events from hadronic reaction
- \Rightarrow Good PID performance
 - Wide momentum range: 2–16 GeV/c
- ***** Ring image Cherenkov counter
- High speed data taking for high production rate
- \Rightarrow DAQ system with recent techniques
- ***** Pipelined front-end modules with high speed data link
- ***** On-line event reconstruction

RICH: Design & simulation

• Huge background by hadronic reaction

- Wrong PID of π^+ or proton as K⁺
- \Rightarrow 20 times higher contribution
- * 3% wrong PID \Rightarrow Background \times 2.4
- High-momentum PID
 - Wide momentum range: 2-16 GeV/c
- \Rightarrow Hybrid RICH
 - Aerogel (n=1.04) + C_4F_{10} gas (n=1.00137)
- Detector plane: $2 \times 1 \text{ m}^2$
 - Segment size: 5.4 cm
 - MPPC (>3 × 3 mm² size) + Light guide
- Spherical mirror: ~3 m diameter
- Performances
 - Efficiency of K, π, p: ~99%
 - Wrong PID: $0.10\%(\pi \rightarrow K)$ and $0.14\%(p \rightarrow K)$
 - \Rightarrow Background × 1.05

Reconstructed Cherenkov angle

RICH: Test experiment **Experimental setup**

- To check
 - Spherical mirror response
 - MPPC performance
- ⇒Dependence on both positions and angles
- GeV-y beam line in ELPH
 - 700 MeV electron beam
 - Radiator: Air
 - MPPC: 8 × 8 array
- **Preliminary result**
 - Cherenkov angle was clearly reconstructed.
 - $\theta_{\text{Chere.}} = 24 \text{ msr}$
 - $\circ \Delta \theta_{\text{Chere.}} \sim 3.0 \text{ msr(rms)}$
 - Other analysis on-going

Fiber trackers: Candidate

- *** J-PARC beam: Bad time structure**
- \Rightarrow Narrow time gate
- is essential to suppress accidental hits.
 - E50: 60 M/spill (30 MHz)
- Requirements
 - 1 MHz/fiber: e.g. 1 mm

& 1 mm MPPC (25 µm pixel)

- Tracking efficiency: ~99%
- Thin material thickness as possible
- Focal plane & Beam tracking
 Fiber Tracker at target downstream
- * Simulation study on-going
 - Accidental rate by using J-PARC beam structure
 - Multiple scattering and energy loss effects
- * Readout electronics development

DAQ: Readout channels

By T.N.T

36

Detector	# of ch.	rate	time resolution	Front-end	TDC LSB
type		[MHz/ch]	[nsec] (σ)		[nsec]
BFT,FFT,SFT	9600	1	< 1	MPPC with	1
				CITIROC or PETIROC2	
SRICH	10000	0.xx	< 1	MPPC with	1
				CITIROC	
T0	140	3	< 0.1	MPPC with	0.025
				PETIROC2 or discrete amp	
TOF	160	0.xx	< 0.1	FM-PMT	0.025
RPC	184	0.xx	< 0.1	discrete amp	0.025
DC	7545	0.xx	< 1	DC-FEAT	1

Reaction rate (30 M/spill, 4 g/cm² target): 3.63 M/spill × 4 tracks

- ***** TDC base readout: Pulse height by TOT method
- \Rightarrow Total ~30,000 ch
 - MPPC: ~10,000 (Fiber) + ~10,000 (RICH)
 - DC: ~7,500
 - Timing counter (HR TDC): ~500

DAQ: Scheme

*****E50: Streaming DAQ system

DAQ: Trigger-less system

Requirement: On-line momentum analysis is necessary.

Planned E50 system

- On-line event reconstruction
- PC clusters
- \Rightarrow Flexible data taking system
 - Advantages
 - Flexibility for byproducts events
 - Cost of PCs having many CPUs are lower to produce specific modules.
 - Available for other experiments
 - Disadvantage
 - Members have no experience.

***** Cellular automaton + Kalman filter track fitting (CBM on-line tracking)

- On-line tracking: ~100 µsec/track/CPU-core with Intel Xeon E4860
 - CBM condition: ~200 tracks/event
- \Rightarrow E50 condition: 100-250 CPU

Main channel

- Y_c baryons: $\pi^- + p \rightarrow Y_c^+ + D^{*-}$
 - $\mathbf{D}^{*-} \rightarrow \mathbf{D}^{0} + \pi^{-} \rightarrow \mathbf{K}^{+} + \pi^{-} + \pi^{-} (\mathbf{3.88\%})$ + 2 other charged channel can be used.
 - $\circ \quad \mathbf{D}^{*-} \to \mathbf{D}^{0} + \pi^{-} \to \mathbf{K}^{+} + \pi^{-} + \pi^{+} + \pi^{-} + \pi^{-} (8.07\%)$
 - $\circ \quad D^{*-} \to D^{0} + \pi^{-} \to K_{S}^{\ 0} + \pi^{-} + \pi^{+} + \pi^{-} \to \pi^{+} + \pi^{+} + \pi^{-} + \pi^{-} + \pi^{-} (2.82\%)$

1) On-line momentum analysis

- Fiber diameter (1 mm) and DC cell size (10–20 mm) are assumed.

2) No PID for scattered particles

- Only charge information is used.

3) $(P^+ + P^-)$ w/ M("K⁺", " π^- ") > 1.5 GeV/c² & p⁺ + p⁻ > 10 GeV/c \Rightarrow "D⁰ event" rate: a few 10 kHz (~0.5 GB/spill)

4) $(P^+ + P^- + P_S^-)$ w/ mass gate & mom. \Rightarrow On-line "D*" tagging: < 1 kHz (~0.05 GB/spill)

* Main channel data rate is expected to be low enough.

Other channels

Y_c baryons $\pi^{-} + p \rightarrow Y_{c}^{+} + D^{*-} : (K^{+} + \pi^{-} + \pi^{-})$ - $\pi^- + p \rightarrow D_{\text{bar}} N (c_{\text{bar}} d u d d) + D^{*+} : (K^- + \pi^+ + \pi^+)$ $\Xi_{\rm c}$ baryons: R = Y_c production \times 1/10 $- \pi^- + p \longrightarrow \Xi_c^{\ 0} + D^{*-} + K^+ : (K^+ + \pi^- + \pi^- + K^+)$ $- \pi^- + p \to \beta^{++}(cs_{bar}uud) + D^{*-} + K^-: (K^+ + \pi^- + \pi^- + K^-)$ Y baryons: Yield = $Y_c \times 10^5$ $-\pi^{-} + p \rightarrow Y^{0} + K_{s}^{0} : (\pi^{+} + \pi^{-})$ $-\pi^{-} + p \rightarrow Y^{0} + K^{*0} : (K^{+} + \pi^{-})$ - $\pi^+ + p \rightarrow Y^+ + K^{*+}$: $(K_s^0 + \pi^+) \rightarrow (\pi^+ + \pi^- + \pi^+)$ $- \pi^{-} + p \to \Theta^{+} + K^{*-}: (K_{S}^{0} + \pi^{-}) \to (\pi^{+} + \pi^{-} + \pi^{-})$ Ξ baryons: Yield = Y_c × 10³-10⁴ - **K**⁻ + **p** $\rightarrow \Xi^0$ + K^{*0} : (**K**⁺ + π^-) - **K**⁻ + **p** $\rightarrow \Xi^{-} + K^{*+}$: (K_s⁰ + π^{+}) $\rightarrow (\pi^{+} + \pi^{-} + \pi^{+})$ $- \pi^{-} + p \rightarrow \Xi^{-} + K_{s}^{0} + K^{+} : (\pi^{+} + \pi^{-} + K^{+})$ - $\pi^- + p \rightarrow \Xi^- + K^{*0} + K^+ : (K^+ + \pi^- + K^+)$ Ω baryons: Yield = Y_c × 10² - $K^- + p \rightarrow \Omega^- + K_S^0 + K^+: (\pi^+ + \pi^- + K^+)$ - **K**⁻ + **p** $\rightarrow \Omega^{-}$ + K^{*0} + K⁺: (**K**⁺ + π^{-} + **K**⁺) **Drell-Yan channels** $- \pi^{-} + p \rightarrow n + \mu^{+} + \mu^{-} : (\mu^{+} + \mu^{-})$

 $- \quad K^- + p \to Y^0 + \mu^+ + \mu^- : (\mu^+ + \mu^-)$

Byproducts *Event selection as you like !*

* Single scattered channels are difficult to be taken. c.f. $\pi^- + p \rightarrow \Sigma^- + \mathbf{K}^+$ • K⁺ production rate: ~200 kHz

***** Kaon reaction is acceptable due to 1/200 beam rate. c.f. $K^- + p \rightarrow \Xi^- + K^+$

DAQ: Module R&D

Common features: TDC base data taking

- Pulse height correction by TOT
- Pipelined data transfer with a high-speed data link.

• MPPC readout

- Module with CITIROC/PETIROC chips
- \Rightarrow Open-It project with KEK electronics group

• Wire chamber readout

- ASD + TDC readout modules
- TDC LSB: ~1 ns
- \Rightarrow Collaboration with LEPS group
- High resolution TDC module
 - TDC (+ discrete amp)
 - TDC LSB: ~25 ps

***** Module R&D needs resources. However, those modules can be standard modules for the hadron hall experiments and so on.

- Charmed baryon spectroscopy
 - To understand essential degree of freedom of hadron
- Experiment at the J-PARC high-p beam line
 - Inclusive measurements by missing mass spectroscopy
 - Design of Spectrometer
- Status of essential parts for the E50 experiment
 - RICH
 - Designed RICH has good performances.
 - R&D are in progress: MPPC detector plane, spherical mirror
 - Test experiment at ELPH: Analysis on-going
 - High-rate detector
 - Narrow time gate is essential due to bad time structure.
 - Scintillating fiber tracker was chosen.
 - R&D: Fiber shape and configuration, readout module
 - DAQ
 - Grand design of DAQ system
 - On-line event reconstruction
 - Module R&D: MPPC readout, ASD+TDC for DC, HR TDC for counters

J-PARC E50 collaboration

- RCNP
 - S. Ajimura, T. Nakano, H. Noumi, K. Shirotori, Y. Sugaya, T. N. Takahashi, T. Yamaga
- KEK
 - K.Aoki, Y. Morino, K. Owaza
- **RIKEN**
 - Y. Ma, F. Sakuma
- Tohoku ELPH
 - T. Ishikawa
- Yamagata U
 - Y. Miyachi
- Soul National U
 - K. Tanida
- Kyoto U
 - M. Naruki
- Tohoku U
 - K. Miwa
- Academia Sinica
 - T. Sawada, C.W. Chang
- Korea U
 - J.K. Ahn
- Osaka U
 - R. Honda
- JLab
 - J.T. Goetz

Next Generation Hadron Experiment at the J-PARC High-p beam line

Let's do it together !

Thank you for your attention