

Kazuki YAJIMA Osaka University

計測システム研究会@RCNP 2015/07/25

目次

背景

- LHC&ATLASアップグレード計画
- シリコン検出器の性能評価手法
- 新テレスコープ検出器について
- テレスコープ検出器読み出し開発
 - Firmware(FPGA)
 - Software

- 大型ハドロンコライダー(LHC)は 2025年ごろHL-LHCへ
- ピークルミノシティが現行の5倍!
 (1×10³⁴ cm⁻²s⁻¹ → 5×10³⁴ cm⁻²s⁻¹)
- HL-LHCアップグレードに合わせ ATLASシリコン検出器は総入れ替え
- テレスコープ検出器…
 新シリコン検出器の性能評価に必要

ATLASシリコン検出器

- 飛跡検出器として使用
- 外層にはストリップ検出器、
 内層にはピクセル検出器を用いる
- シリコン検出器は
 衝突点に最も近い検出器
 ←高ルミノシティ化で
 更なる高放射線耐性が必要

シリコン検出器の性能評価

- シリコン検出器の放射線耐性評価
 - 1. サンプル作成
 - 2. 放射線照射
 - 3. ヒット検出効率
 電荷収集効率の測定
- ・これらの位置依存性を ピクセルスケール以下で見たい

テレスコープを用いた性能評価

- 試験対象(DUT)を別に用意した
 飛跡検出器(テレスコープ検出器)
 で挟みビーム試験
- ATLASシリコン日本グループは 新テレスコープを開発中
- テレスコープの要求性能
 - ・小型、可搬性
 - ・位置分解能5um
 - ・10k event/s の
 - データ取得レート

新テレスコープ検出器開発史

- センサー信号読み出しASICの
 制御、読み出しをSEABASで行う
- 2012: ASIC1chipの試験 (ver1)
- 2013:差動信号化、Daisy Chain、
 基板の小型化 (ver2) 13年4月1日月曜日
- 2014:両面実装基板 (ver3)
 4台の同時読み出し

Newテレスコープ検出器

- シリコンストリップセンサー×2
 - 256ch 50umピッチ, p-in-n型
 - テレスコープ基板の両面に、
 直交させて貼付け(右図)
- ・電荷分割法より
 3umの位置分解能が期待(下図)
 →アナログ読出の必要性

Newテレスコープ検出器

- 信号読み出しASIC SVX4
 - ・Fermilab, LBLによる開発
 - ・Chipあたり128 チャンネル
 - ・各chに8bit Wilkinson ADC
- テレスコープ基板はコンパクトに!

有感領域 13mm x 13mm

読み出しシステム

- 汎用読み出しDAQ基板
 SEABAS2
 - ・KEK開発
 - ・SVX4の制御,データ処理,

- ・Gigabit Ethernet規格, TCP/IP, UDP プロトコル対応
- ・FPGAを2つ搭載
- ・4つのテレスコープを

汎用読み出し基板SEABAS2

- 2つのFPGAを搭載
 - User FPGA (青)
 - SEABASのI/Oポートへ接続
 - ユーザーがプログラムする
 - SiTCP FPGA (赤)
 - EthernetドライバとUser FPGA間の接続
 - TCP/IP, UDPプロトコルの実装
 - ユーザーは普段いじらない

FPGA内部ブロック図

DUTとの同期DAQ

- BUSY信号でトリガをVETO
 →DUTとテレスコープでの、
 イベントミスマッチを防ぐ
- ・加えて、双方のイベントの 時間情報の一致を要求 →SVX4は時間情報を持たない
- FPGA上でデータに時間情報を
 くっつける←Event Header

Byte no	Content
1	Chip ID
2	Pipeline Cell Number
3	Channel Id
4	Data for above Channel Id
•••	•••
Last-1	Channel Id
Last	Data for Above Channel Id

Event Header

制御信号

- SVX4の制御信号は
 複雑な構造かつ、
 細かな時間調整が必要
- タイミングチャートを
 符号化しFPGAのRAMに保存
 信号はRAMから複号
- RAMはSiTCPを通じて書き換え
- 信号の変更に
 コンパイルの必要なし!

抱えていた問題

- Firmwareの不安定性
 - データの乱れ、欠け
 - configurationが上手くいかない
 - DAQが動かない
- 過去にもあった問題だが、
 回路規模が増えるにつれて
 悪化。。。

DAQの不安定性の解決

- DAQが動かない、 chipのconfigurationが変更できない or 思った通りの変更ができない
- コンパイル毎に症状が大きく変わる
 ←タイミングの問題
- FPGAのクロックドメインを減らす、
 クロックを跨ぐ信号間にFFを2つ挟む

Timing report description Timing summary Informational messages Timing constraints TS_CLK_50M = PE...0 MHz HIGH 50%: Setup paths Hold paths Component switching limits TS_REG_CLK = PER....5 MHz HIGH 50%; Image: TS_DCMPLL1_CLK2X_... HIGH 50%; TS_DCMPLL2_CLK0...K_50M HIGH 50%; TS_DCMPLL1_CLK... 0.8 HIGH 50%; B Setup paths Hold paths Component switching limits TS_DCMPLL1_CLK...0.16 HIGH 50%; IS_DCMPLL1_CLKO... 0.08 HIGH 50%; Image: TS_DCMPLL2_CLK... 2.5 HIGH 50%; TS_DCMPLL2_CLKO...F * 2 HIGH 50%; Derived Constraint Report

データ破損問題

• データの破損 ・SVX4がデータを 出し切らない (右図)

 ・原因をSVX4内のFFで メタステーブル現象が 起きていると推測

15/07/25 計測システム石 3 250 000

PipeData_8

Entries

317

データ破損問題

• FPGAの出力パッド中のFFを使う →位相のずれがキャンセル

(* IOB = "FORCE" *) reg [3:0] ir_prin_r; OBUF #(.IOSTANDARD("LVCMOS33")) PRin1_MAP(.O(PRin[0]), .I(ir_prin_r[0]));

ADC値の不安定性

- ADC値の不安定性
 - ・イベント数に対し1%の割合で、
 全chのADC値がpedestal値から
 上昇する(右下図)
 - ・データ構造が壊れるという症状も
- Preampを定期的にリセットする必要
 ←このリセットが原因と判明

ADC値の不安定性

- リセット中はトリガをVETOすること
 により、上記問題は解消
- 実際にはトリガレイテンシに
 合わせてリセットの位置は変動
 温度等により不安定な時間も変動
- VETOのタイミングを scanできるように
- 実際の使用時は
 Preampリセットは少なくする

DAQソフトウェア

- デコード、オンライン解析、
 tree fileへの保存
- 2つのversion
 - スタンドアローン(左)
 - SCTJDAQ (右)
 - マルチプロセス、GUI
 - テレスコープ検出器と
 DUTのデータを統合

ビーム試験

- ビーム試験をRCNPで行った
- proton beam@80MeV
- テレスコープ検出器の
 検出効率の評価を目指す

解析ソフトウェア

- 解析ソフトウェアも自前で用意
- トラッキング、アラインメント、
 検出効率、分解能算出…
- RCNPでとったデータを解析中

Correlation plot

• マルチプロセス化、ファイルフォーマットの変更で対処を予定

結論

- ATLAS日本シリコングループは 新テレスコープ検出器の開発を行っている
- 新テレスコープ検出器の読み出し系は完成した
- 現在
 - ビームテストを行った
 解析ソフトウェアの作成と並行して解析中
 - 9月にCERNでピクセル検出器のビーム試験に使用予定

Additional slides

タイムスタンプ

- 10us刻み←10k event/sでは問題なし (必要に応じ変更可)
- 1kHzのトリガでDAQ
- タイムスタンプの値は正確に線形増加

ADCs on SVX4

- Wilkinson ADC
- Adjustable parameters
 - Slope of ramp voltage
 - Ramp pedestal
 - Polarity

