新BPMC試作機の前段信号減衰器における発熱試験

久保木浩功

外山毅、佐藤健一郎、久保木浩功 MR モニタGr., KEK, J-PARC

脇田俊昭 (有)啓

森野貴行 (有) 森野テクニカルサービス

http://j-parc.jp/Acc/ja/about.html

Courtesy of T. Toyama

BPM信号処理

● 処理回路設定は強度によって異なる

	粒子数 Protons/pulse	Amp. gain	Low Pass Filter
低強度	2×10 ¹³	×5	OFF
大強度	1×10 ¹⁴	×2	ON

● 位置分解能の1桁の改善

S/Nの改善

・信号に対する定在波比 (VSWR)の減少→インピーダンス整合の改善 < ±0.1%
 ・ADCの性能: 14 bit、80 MS/s → 16 bit、250 MS/s

陽子数/bunch	MR繰り返し (sec)	ビームパワー (kW)	BPMC入力パワー (W/ch)	
2.7×10 ¹³	2.48	420	6.5	現状
3.5×10 ¹³	2.48	543	8.5	近い将来
3.5×10 ¹³	1.25	1080	8.5	近い将来
4.1×10 ¹³	1.25	1300	10	将来目標

● 大強度ビームからの信号に対する熱負荷への耐性

実現のためには他にも

・ゲイン、減衰器変更時のスイッチ:現状のメカニカルリレーでは不具合→半導体、水銀、リード式? ・DAQ

サンプリングレート、データ長、デジタル処理の場所 (on board / upper level) etc.

● 位置分解能の1桁の改善

S/Nの改善

・信号に対する定在波比 (VSWR)の減少→インピーダンス整合の改善 < ±0.1% ・ADCの性能: 14 bit、80 MS/s → 16 bit、250 MS/s

大強度	ニームからの信号に対する熱負荷への耐性					
	陽子数/bunch	MR繰り返し	ビームパワー	BPMC入力パワー		
		(sec)	(kW)	(W/ch)		
	2.7×10 ¹³	2.48	420	6.5	現状	
	3.5×10 ¹³	2.48	543	8.5	近い将来	
	3.5×10 ¹³	1.25	1080	8.5	近い将来	
	4.1×10 ¹³	1.25	1300	10	将来目標	

. . -. . . . • 7

実現のためには他にも

・ゲイン、減衰器変更時のスイッチ:現状のメカニカルリレーでは不具合→半導体、水銀、リード式? •DAQ

サンプリングレート、データ長、デジタル処理の場所 (on board / upper level) etc.

将来想定されるBPMCへの入力信号 V_{peak-peak}: ±100 V Power: 10 W

デジタル処理回路に入る前に前段(Front-end)で減衰させる必要 →前段減衰器の熱負荷耐性

将来想定されるBPMCへの入力信号 V_{peak-peak}: ±100 V Power: 10 W

ビームを模擬した信号を入力し、抵抗の温度上昇と波形を確認 (1)FR4基板、(2) セラミック基板 で試験

試験 16/06/24

FR4基板での試験

目的:抵抗の温度がどこまで上がるか?ファンの冷却効果の確認

温度上昇上限: 当初+40℃ (60℃)と設定していたが、自然空冷で放熱できるのは4 W程度

→厳しいのでファン(内部、外部)で強制空冷

Courtesy of T. Morino

試験セットアップ

アンプ出力自体も±100 V出そうとするとピークが飽和してくる

温度上昇

入力 (W/ch)	ファン		抵抗表面温度(℃)	基板温度 (℃)
	内部	外部		
1.4	OFF	OFF	53	28.2
4.1	OFF	OFF	105	35.4
4.1	ON	OFF	94	36.7
4.1	ON	ON	95	30.6

最高温度に到達するまでにかかる時間は数秒 (1 Hzにすると温度変化の周期が確認できる)

試験16/07/21 セラミック基板での試験 目的: 熱伝導がよいセラミックにすることで、放熱効果の改善を期待

	セラミック (アルミナ)	FR4
熱伝導率 (₩/(m⋅K))	32	0.4

入力 (W/ch)	ファン		抵抗表面温度(℃)	基板温度 (℃)
	内部	外部		
3.0	OFF	OFF	46.2	42.7
10.5	OFF	OFF	68.4	54.3
10.5	OFF	ON	54.3	39.5
10.5	ON	ON	54.0	39.2

- 4 W/chで100℃近かった抵抗表面温度が、10 W/chでも 50℃強まで改善。
 - →セラミックの熱伝導率が高いことによりアルミ板への 熱流束が増え外部ファンの効果が増大した。
- 各基板を個別に冷却するための内部ファンの効果は低い
 →外部ファンのみで十分 (実装の際にファンの個数を減らせる)

試験16/07/21

セラミック基板での試験

目的: 熱伝導がよいセラミックにすることで、放熱効果の改善を期待

	セラミック (アルミナ)	FR4
熱伝導率 (₩/(m⋅K))	32	0.4

入力 (W/ch)	ファン		抵抗表面温度(℃)	基板温度 (℃)
	内部	外部		
3.0	OFF	OFF	46.2	42.7
10.5	OFF	OFF	68.4	54.3
10.5	OFF	ON	54.3	39.5
10.5	ON	ON	54.0	39.2

- 4 W/chで100°C近かった抵抗表面温度が、10 W/chでも 50°C強まで改善。
 - →セラミックの熱伝導率が高いことによりアルミ板への 熱流束が増え外部ファンの効果が増大した。
- 各基板を個別に冷却するための内部ファンの効果は低い
 →外部ファンのみで十分 (実装の際にファンの個数を減らせる)

まとめ

- BPMの位置分解能の1桁改善を目指し、新BPMC開発が進行中 目標分解能は数μm~数十μm (現状より1桁の改善)
- 将来的に想定されるBPMC入力信号による熱負荷は10 W、電圧ピーク値は±100 V →入力信号を直接受ける前段減衰器が必要
- ●前段減衰器の熱負荷試験を行った
- 外部ファンによる冷却で、回路素子の性能上問題ない温度上昇(+40°C)に抑えることが可能

展望 (放熱に関して)

- 発熱の時間変化、伝達の理解、検討(計算)
- アルミ板の厚さ等、減衰器筐体構造の最適化
- 集積化による放熱への影響の検討
- 外部ファンの現実的な方法

 $SNR(dB) = 6.02N + 1.76 + 10\log 10 k$

N:ビット数

k: *fsampling* (*MS*/*sec*)/2/信号带域幅(*MHz*),信号带域幅: 10 (MHz)

	現状	新BPMC
Ν	14	16
fsampling	80	250
k	4	12.5
SNR	94.9	115.6

115.6-94.9=20.7 (dB) ほぼ10倍の改善