ATLAS 実験シリコン検出器アップグレード の為のテスト用 DAQ システム

計測システム研究会@J-PARC 2014/11/20-21

廣瀬穣 for the ATLAS-Japan silicon group

東工大理工

Introduction

- Inner detector in ATLAS
 - ➡Purpose :
 - Particle tracking
 - Vertexing
 - Provides very important information for "every" reconstructed objects.
- ATLAS-Japan group is involved in the silicon tracker.
 - ➡Pixel detector
 - SemiConductor Tracker (SCT)

25m

Inner detector in HL-LHC

- Many problems to use the current de
 - Intolerable radiation damage
 - Fluence of ${\sim}10^{16}~n_{eq}/cm^2$
 - ➡Unacceptable occupancy
 - 23 \rightarrow 140 pp collisions in one b

Completely new design is under st

per 25ns bunch crossing

Work field relating to DAQ

• Pixel :

- ➡DAQ development for testing new module design.
- SCT :
 - ➡DAQ development for testing new module design.
- Telescope to test the detectors above :
 - ➡DAQ development to readout telescopes.
 - Telescope : reference detector to provide hit position.
 - ➡Software to operate the telescope+DUT system.

Work field relating to DAQ

• Pixel :

- →DAQ development for testing new module design.
- SCT :
 - ➡DAQ development for testing new module design.
- Telescope to test the detectors above :
 - ➡DAQ development to readout telescopes.
 - Telescope : reference detector to provide hit position.
 - ➡Software to operate the telescope+DUT system.

All these DAQ systems are developed based on the "SEABAS" board.

Introduction of the SEABAS board

- SEABAS(2) : general purpose DAQ board with SiTCP.
 - ➡SiTCP : network processor to communicate with PC. Maximum data rate : 100 (1000) Mbps.
 - ➡FPGA for each user application.
 - ⇒2(4)×NIM_IN, 2×NIM_OUT (trigger, busy etc...).
 - ➡1(16)ch×ADC and 4ch×DAC

Connectors for each application (120 signal lines from UserFPGA)

Advantage to use SEABAS

- "Compact" and "versatile" DAQ system.
 - ➡Compact :
 - Don't need large crates just for testing prototypes...
 - ✓ E.g. NIM, CAMAC, VME, ATCA etc...
 - Portable system is preferable.
 - \checkmark We have to transport the system for the testbeam.
 - →Versatile :
 - Have to test new features of the prototype quickly.

SEABAS is one of the good solution !! - enough data transfer speed. -enough I/O ports.

Pixel module readout

Upgrade of the pixel detector

• Readout ASIC : FE-I3 \rightarrow FE-I4.

- ➡Smaller pixel size, faster readout speed.
 - To cope with higher hit rate.

FE-I4

FE-I5

FE-I3

Expected module design

- Final design for the pixel module uses an multiplexer (MUX).
 - Since module mount have only two data line for one module.

Expected module design

- Final design for the pixel module uses an multiplexer (MUX).
 - Since module mount have only two data line for one module.

Expected module design

- Final design for the pixel module uses an multiplexer (MUX).
 - Since module mount have only two data line for one module.

FEI4-SEABAS2 DAQ system

- Can readout up to four FEI4s
 - →MUX can be used to readout two FEI4s.

FEI4-SEABAS2 DAQ system

- Can readout up to four FEI4s
 - →MUX can be used to readout two FEI4s.

Firmware design

- To make flexible DAQ system
 - ➡Only provide the interface for ten FEI4 commands.
 - e.g. LV1Trigger, CalibrationPulse, WrRegister etc...
 - ➡All meaningful data from FEI4s is sent to PC.
- All operation can be done by software coding.
 - ➡Relatively easy for non-DAQ expert to test new things.

Threshold tuning

- To set same threshold among pixels.
 - ➡Good example of the operation
 - Needs global configuration.
 - Needs pixel local configuration.
 - Charge injection

- etc...

Strip module readout

Current/new design of the SCT module

- Shorter strips to cope with high density of the particle.
- Radiation hard ASIC and sensor.

DAQ setup

• Relatively large system : readout data from 16 modules.

Detector ladder

- 16 hybrids on top/bottom
- (Total 32 hybrids)

DAQ design

- SEABAS is purely used as an interface to pass...
 - ➡"Command bit stream" from PC to each detector.
 - ➡ "Hit data" with corresponding ID from detector to PC.
- Advantage :
 - ➡No firmware development is needed for future prototypes.

Example of the operation

- Measuring the size of noise.
- Procedure :
 - ➡Injecting a certain amount of charge.
 - Repeat injection by changing the threshold setting.
 - ➡Fitting the efficiency curve by the error function.
 - \Rightarrow Extract parameter σ as the size of noise.

Result of the noise measurement

- Tried two ways to measure the noise.
 - Measuring hybrid by hybrid.

Measuring whole hybrids at the same time.

Telescope development

Telescope system for testbeam

- Testbeam is important to check the detector performance.
 ➡Needed a precise reference detector → silicon telescope.
- Telescope specification :
 - ➡Four layers of the strip sensor pair with 90° stereo angle.
 - ➡256 strips with 50 um pitch (active region ~ 13×13 mm²)
 - ➡R/O ADC data from each strip by SVX4 ASIC.
 - ➡Expected position resolution of ~3 um.

DAQ software

- Web based GUI interface called SCTJDAC.
 - Independent software modules sharing memory.
 - Fast : thanks to multi-processing.
 - Flexible : composed of software modules.

How to synchronize multi-SEABAS

- Trigger logic unit (TLU).
 - ➡Based on Xilinx Spartan 3AN startarkit.
 - ➡Handling external trigger, busy, veto ...
 - ➡Supplying reference clock to two SEABASs.
 - SEABAS sends data with "TimeStamp" bases on this CLK.

Testbeam @ CERN (Oct. 2014)

- Beam time : 26 Oct. 3 Nov
- 120 GeV pion beam from SPS.
- Acquired ~10 M events
 - ➡Trigger supplied by a fiber tracker.
 - ➡Analysis is ongoing.

Preliminary result

• Successfully see the correlation between telescope layers.

Clear correlation observed !!

Conclusions

- Development of the DAQ system for testing future silicon detectors in ATLAS.
 - ➡For pixel, strip detector.
 - ➡Telescope system to test detectors above.
- Aiming to develop a compact and versatile system.
 - ⇒All DAQ system is based on the SEABAS board.
 - ➡Benefitted from these features.
 - Easily migrated to the new design of modules.
 - Potable for testbeams.
- Little word about our future plan :
 - ➡Keep using SEABAS.
 - →Limitation would be caused by the FIFO size/IO speed(?).

Backup

External trigger

- NIM standard input can be used as an external trigger.
 - ➡Maximum DAQ rate : ~400 Hz
- Example of the data taking with β -source.
 - ⇒Scintillator + PMT was used for the trigger signal.
 - Hits by collimated β -ray can be seen as expected.

Operation with MUX

- Developed things
 - ➡Firmware : de-multiplexer, data extractor
 - ➡Software : decoder
- Result of charge injection.

Time over threshold(ToT)

