HypTPC読み出しシステム 開発の現状

原研 先端基礎研究センター 細見 健二

計測システム研究会@J-PARC 2014/11/20

目次

- 対象実験
 - J-PARC E42/E45
- 検出器
 - Hyp(Hyperon)TPC
- 読み出し装置
 - GET system
- J-PARC DAQへのGet system組み込み – GET test bench @ JAEA
- まとめ

J-PARC E42

Search for H-dibaryon 6-quark (uuddss) state in ¹²C(K⁻, K⁺)X at 1.6 GeV/c $H \rightarrow 2\Lambda \rightarrow \pi^{-}\pi^{-}pp$

J-PARC E45

Measure $p(\pi, 2\pi)N$ to study baryon resonances and search for hybrid baryon (qqqg)

 $\pi^{-}p \rightarrow \pi^{+}\pi^{-}n, \pi^{0}\pi^{-}p$ $\pi^{+}p \rightarrow \pi^{0}\pi^{+}p, \pi^{+}\pi^{+}n$ 2 charged particles + 1 neutral particle \rightarrow missing mass technique

→ Trigger with hodoscope

 π^{+-} beam on liquid-hydrogen target (p= 0.73 – 2.0 GeV/c)

Hyp(Hyperon)TPC

Shared by J-PARC E42 and E45 Requirements

- Large acceptance
 - Target inside TPC
- High-rate operation (10⁶ Hz/cm² beams)
 GEM and Gating Grid Suppression of ion backflow causing E-field distortions to less than5%
- Good position resolution ~ 0.3mm rms
 E and B in parallel
 small pad size ~2.5 mm x 10 mm
- π/K/p separation
 Good dE/dx resolution
 - large number of pad planes 32
 dE/dx dynamic range ~ 10

HypTPC structure

Readout pads configuration

Inner planes (rings)
 2.1~2.7x9mm²
 #plane=10

- Outer planes (rings)
 2.3~2.4x12.5mm²
 #plane=22
 Total #pad 5768
- Average charge sharing
- = 3 pads / hit
- Horizontal position resolution at B=1T

< 0.3 mm

(at drift length>10cm)

GEM configuration

•4 GEMs (277x277mm²)

Electrode division

- •12.5 mm width (20 div.) 1 sheet
- •41mm width (6 div.) 3 sheets
- Suppress discharge rate
- Minimize acceptance reduction in case an electrode is broken

GEM gain and discharge rate

(between Cu foils within a GEM)

Charge on pad (1cm length)

 $=100x1.6x10^{-19}x10^{4} x 0.6$ (charge sharing)

~100fC

1.0pC range (AGET) → Dynamic range=10

HypTPC construction

- Assembly at REPIC at Tateyama (Aug-Sep 2014)
- Completed (Sep 5)

HypTPC test

• Gas leak test and HV test (cathode plane, field wire, gating grid wires) complete (Sep 19)

Requirements for HypTPC readout

- Readout ch: 5768
- Input charge: 100 1000 fC
- Drift time: 10us (55cm)
- ADC, TDC -> waveform sampling
- ~1kHz DAQ rate

GET readout system

GET

- The General Electronics for Time projection chambers
- Developers

CEA Commissariat à l'Energie Atomique et aux Energies Alternatives

* CENBG CENBG Centre d'Etudes Nucléaires de Bordeaux Gradignan

GANIL

Grand Accélérateur National d'Ions Lourds

NSCL

The NSCL (National Superconducting Cyclotron Laboratory) at Michigan State University

Users (Japan)

– JAEA HypTPC, RIKEN Samurai-TPC

GET people

GET components

GET components

GET components

AGET ASIC

Mean features

Input current polarity: positive **or** negative 64 (72) analog channels 4 charge ranges/channel: 120 fC, 240 fC, 1 pC & 10 pC 16 peaking time values: 50 ns(100 ns) to 1(2) μs 512 (511) analog memory cells / channel Fsampling: 1 MHz to 100 MHz; Fread: 25(20) MHz Auto triggering : discriminator + threshold (DAC) Multiplicity signal: analog OR of the 72 discri. outputs

Main features for the readout

- Address of the hit channel(s)
- 3 readout modes:
- All, hit or specific channels
- Predefined number of analog cells / trigger (1 to 512)

 Possibility to bypass the internal CSA and to enter directly into the filter or SCA inputs

Multiplicity

10⁶ K⁻ beam/spill, 10-beam backgrounds with 10 us drift time.

(I signal with 10 beams)

Multiplicity

Average multiplicity is less than 10 hits/AGET

Dead time estimation

Maximum multiplicity per AGET : 10 Readout cells: 512 ADC readout rate: 40nsec (25MHz)

512cells x 40 nsec x (10ch + 2ch (noise test)) = 246 usec / event

Fast clear function

Fig. 1: An ideal timing chart in J-PARC E42 experiment.

DAQ efficiency estimation

- (K⁻,p) elastic : dominant background 5-10 kHz $\epsilon_0 = \frac{1}{1 + 9k \cdot 250 \mu sec} = 0.29$
- w/ 2nd level trigger (fast clear)

Rough mass selection for scattering particles

J-PARC DAQへのGet system組み込み

Overview of the HD DAQ

Overview of the HD DAQ

Overview of the HD DAQ

J-PARC Trigger/Tag distribution system

J-PARC Trigger/Tag distribution system

Receiver module for the GET system

- VME GP-IO module

 FPGA for multi purpose
 CPLD for VME access
- Additional daughter card
 - J-PARC Tag receiver (RJ45 x2)
 - 16ch x 2 ECL out put
- FPGA firmware modification
 - Current: MTM --- RM --- VME
 - Mod: MTM --- RM --- CENTRUM interface on MUTANT

Connection

Signal Assignments					
MUTANT	J-PARC				
1: LO 2: Fast Clea	Trigger 1				
3: Trigger Request					
4: Dead Time	Busy				
5: 96bit event	tag				

CERNTRUM interface on MUTANT

ORIGINAL CENTRUM information is based on a 96 bit frame

D<95>		D<48>	D<47>	D<16>	D<15>	D<0>
	48 bit time stamp		32 bit event number		16 bit check sum	

J-PARC event tag after converting to the CERNTRUM structure

D<95>	D<48> D<47> D<16		D<16>	D<15> D<0>
unused (=0)	8 bit spill number	unused (=0)	12 bit event number	16 bit check sum

Chronograph for data transfer

GET test bench @ JAEA

Summary

- We designed and developed a GEM-TPC with the gating grid (HypTPC) for J-APRC E42/E45

 1 MHz K⁻ beam is directly injected into the TPC.
- The GET system is adopted for HypTPC readout.
 - CH mapping for moderate hit multiplicity <- done</p>
 - Fast clear function <- done</p>
 - J-PARC Event Tag Receiving <- done</p>
 - Frontend software <- under development</p>
- TPC test with full GET system
 - July, 2015 -