
HypTPC読み出しシステム	
開発の現状	

計測システム研究会＠J-‐PARC	 2014/11/20	

原研　先端基礎研究センター	
細見　健二	

	

目次	

•  対象実験	
–  J-‐PARC	 E42/E45	

•  検出器	
– Hyp(Hyperon)TPC	

•  読み出し装置	
– GET	 system	

•  J-‐PARC	 DAQへのGet	 system組み込み	
– GET	 test	 bench	 @	 JAEA	

•  まとめ	

Search	 for	 H-‐dibaryon	 6-‐quark	 (uuddss)	 state	 in	
	 12C(K-‐,	 K+)X	 at	 1.6	 GeV/c	 	

and above the ΛΛ threshold.

2. E42 Spectrometer

The proposed experiment (E42) will be carried out via (K−,K+) reaction off the nuclei at the K1.8
beamline of the hadron hall of the J-PARC ficility. E42 spectrometer consists with a large-acceptance
hyperon Time-Projection-Chamber and forward KURAMA spectrometer as shown in Fig. 1 (a). The
K− beam enters into a HypTPC, which measures all charged tracks from the ΛΛ decays or Λpπ−
decays as shown in Fig. 1 (b). Simultaneously, forward KURAMA spectrometer detects the forward
outgoing K+ particle with high momentum resolution.

!!"#$%&

'()*+,

-.)$/0123.04526"
'$7&81749"&%62$4

:;<=>="
-)$04/1&$4$/

*?@"A%77B/5C4",8%&#$/D

!E")%/4507$

(a)

!"#$$%"&'(#)*#++,*-"'

.%,/&+,0%"'

.#,1-)/&!,"$%*&
2&!,"$%*&3-+/%"

4,/&+,0%"' !45&-6*%"&7-+61%
2&8#%+/&(,$%

9:&;%,1

! π"

Λ

Λ

!

π"

#$

<6=%"(-)/6(*#)$
>%+13-+*?&(-#+&

(b)

Fig. 1. A schematic view of the HypTPC with KURAMA spectrometer (a) and (b) shows a cross-sectioanl
view of TPC and typical event display of ΛΛ production.

The HypTPC has a cylindrical active volume of 500 mm diameter and 550 mm in length. The
K− beam injects a side of HypTPC and the electron drifts downward along the magnetic field. The
HypTPC can measure all charged particles and Λ decays from the 15 mm long diamond target with
almost 4π acceptance. The accpetance can be improved by locating the target 150 mm upstream of the
center of the TPC gas volume. The target holder has a thin copper strips in 2.5 mm pitch to provide
uniform electric field near the target. A gas electron multiplier (GEM) is employed to make a stable
operation. We had performed a test experiment to confirm an operation of the GEM amplification
with a high-count rate proton beam at RCNP. The GEM amplification can be operated up to 106 Hz
of beam intensity [8].

We have optimized the configuration of pad size and layer structure, as shown in Fig. 2 (a). The
pad width is about 2.5 mm and a length of inner pad is 9 mm, while an outer pad has 12.5 mm length.
The total number of pads is 5768. A General Electronics for TPC (GET) will be used in the pad
readout with an induced charge in the pads and a electron drift time. The performance of the readout
electronics depends on the multiplicity of the each GET board. The color in the Fig. 2 (a) shows the
readout section for one GET board, which has 256 channels for a board. We have taken into account
a multiplicity of the readout electronics and it is optimized to get a similar multiplicity for the each
GET board with various configuration of the readout electronics and have chosen this configuration

2■■■

��������-36�&RQI��3URF�� ����������������

H � 2�� ����pp

H � �p��

〜106/spill	

J-‐PARC	 E42	

J-‐PARC	 E45	
Measure	 p(π,	 2π)N	 to	 study	 baryon	 resonances	
and	 search	 for	 hybrid	 baryon	 (qqqg)	 	

3

J-PARC E45

Hyp-TPC

S beam

Measure p(S,2S)N to study baryon resonances and search for
hybrid baryon (qqqg)
 S-p→S+S-n, S0S-p 2 charged particles + 1 neutral particle
 S+p→S0S+p, S+S+n →missing mass technique

�
S+- beam on liquid-hydrogen target
(p= 0.73 – 2.0 GeV/c)

Trigger with hodoscope

H target

Hyp(Hyperon)TPC	

4

Hyp(Hyperon)TPC
Shared by J-PARC E42 and E45
Requirements
• Large acceptance

– Target inside TPC

• High-rate operation (106 Hz/cm2 beams)
 GEM and Gating Grid
 Suppression of ion backflow causing E-field distortions
 to less than5%

• Good position resolution ~ 0.3mm rms
 E and B in parallel
 small pad size ~2.5 mm x 10 mm
�

・ �S/K/p separation
 Good dE/dx resolution

– large number of pad planes 32
 dE/dx dynamic range ~ 10

Helmholtz magnet

HypTPC

AsAd

HypTPC	 structure	

5

HypTPC structure

616φ

~650

550

Gating Grid wire
GEM (3-layers)
Pad plane

576φ

300

Target holder 30I�(E42)
�������������������������80I�(E45)

150

target Drift

Beam
Charged
particle

e-

B
=1T

E
=180V

/cm

Gas：Ar:CH4 90:10
Drift velocity = 5.5cm/Ps
Max drift length = 55cm
Max drift time = 10Ps
Sampling freq 40MHz
512 SCA cellÆ12.8Ps

Gas vessel

Field cage (sensitive
volume)

Readout	 pads	 configuraXon	

2014/9/23 8

• Inner planes (rings)
2.1~2.7x9mm2

#plane=10

• Outer planes (rings)
2.3~2.4x12.5mm2

#plane=22
Total #pad 5768

• Average charge sharing
= 3 pads / hit

• Horizontal position

resolution at B=1T
< 0.3 mm
(at drift length>10cm)

520

215.39

520

Pad configuration

4 separate circuit boards (pad to bottom connectors) are
combined

GEM	 configuraXon	

2014/9/23
6

544

544

GEM configuration

150

・4 GEMs (277x277mm2)
・3-layer GEM (50Pm+50Pm+100Pm)

Hit distribution (GEANT)

Electrode division

•12.5 mm width (20 div.) 1 sheet

•41mm width (6 div.) 3 sheets

・Suppress discharge rate

・Minimize acceptance reduction in
case an electrode is broken

Beam

Target position

GEM	 gain	 and	 discharge	 rate	

7

operation

Discharge rate <= 10 / min
 (between Cu foils within a GEM) GEM Gain~104

Charge on pad (1cm length)
=100x1.6x10-19x104 x 0.6(charge sharing)

~100fC
1.0pC range (AGET) Æ Dynamic range=10

GEM gain and discharge rate

HypTPC	 construcXon	HypTPC construction

• Assembly at REPIC
at Tateyama (Aug-
Sep 2014)

• Completed (Sep 5)
2014/9/23 13

HypTPC	 test	HypTPC Test

• Gas leak test and HV test (cathode plane, field
wire, gating grid wires) complete (Sep 19)

2014/9/23 14

Requirements	 for	 HypTPC	 readout	

•  Readout	 ch:	 5768	
•  Input	 charge:	 100	 –	 1000	 fC	
•  Dri^	 Xme:	 10us	 (55cm)	
•  ADC,	 TDC	 -‐>	 waveform	 sampling	
•  	 ~1kHz	 DAQ	 rate	

GET	 readout	 system	

GET	

•  The	 General	 Electronics	 for	 Time	 projecXon	
chambers	

•  Developers	

•  Users	 (Japan)	
–  JAEA	 HypTPC,	 RIKEN	 Samurai-‐TPC	

GET	 people	

June,	 2014	 @	 RIKEN	

Sep,	 2014	 @	 France	

GET	 components	

GET – Front End:AsAd user manual Reference: GET-AS-002-0012
 Revision: 0
Issue: 1 Last modified: -

page 10

1 GET basics: introduction

The General Electronics for Time projection chambers (GET) is a system intended to provide
the nuclear physicists with a complete solution to carry out experiments requiring gaseous detectors
with a segmented-plane. GET scope starts from the analogue signals processing to go up to
computer-aided event reconstruction. It was developed within the framework of an international
project that grew from different needs of several nuclear physicists and for this reason, it has been
designed to be a versatile and scalable system, able to be quickly set-up and worldwide
implemented.

The system handles up to several tens of thousands charge sensitive channels (charges of both
polarities). Each channel stores into an analogue memory, a continuously sampled preconditioned
signal, while comparing its amplitude to a user-defined threshold. The number of channels over the
threshold and/or any other external condition triggers the sampling stop. The analogue memory
content is readout and coded, then the data is sorted, time-stamped, and extracted through µTCA
standard, to be directed to a computer-farm which further acts as an event builder.

Figure 1 : GET hardware architecture

GET hardware architecture is shown in figure 1: 4 Analogue-to-Digital Converters (ADC) as
well as 4 Application Specific Integrated Circuits (ASIC) for GET (AGET) are implemented on the
GET front-end board. Each AGET handles up to 64 channels of detection. The GET front-end

GET	 components	

GET – Front End:AsAd user manual Reference: GET-AS-002-0012
 Revision: 0
Issue: 1 Last modified: -

page 10

1 GET basics: introduction

The General Electronics for Time projection chambers (GET) is a system intended to provide
the nuclear physicists with a complete solution to carry out experiments requiring gaseous detectors
with a segmented-plane. GET scope starts from the analogue signals processing to go up to
computer-aided event reconstruction. It was developed within the framework of an international
project that grew from different needs of several nuclear physicists and for this reason, it has been
designed to be a versatile and scalable system, able to be quickly set-up and worldwide
implemented.

The system handles up to several tens of thousands charge sensitive channels (charges of both
polarities). Each channel stores into an analogue memory, a continuously sampled preconditioned
signal, while comparing its amplitude to a user-defined threshold. The number of channels over the
threshold and/or any other external condition triggers the sampling stop. The analogue memory
content is readout and coded, then the data is sorted, time-stamped, and extracted through µTCA
standard, to be directed to a computer-farm which further acts as an event builder.

Figure 1 : GET hardware architecture

GET hardware architecture is shown in figure 1: 4 Analogue-to-Digital Converters (ADC) as
well as 4 Application Specific Integrated Circuits (ASIC) for GET (AGET) are implemented on the
GET front-end board. Each AGET handles up to 64 channels of detection. The GET front-end

CoBo	 Mutant	MCH	

μTCA	 crate	

GET	 components	

GET – Front End:AsAd user manual Reference: GET-AS-002-0012
 Revision: 0
Issue: 1 Last modified: -

page 10

1 GET basics: introduction

The General Electronics for Time projection chambers (GET) is a system intended to provide
the nuclear physicists with a complete solution to carry out experiments requiring gaseous detectors
with a segmented-plane. GET scope starts from the analogue signals processing to go up to
computer-aided event reconstruction. It was developed within the framework of an international
project that grew from different needs of several nuclear physicists and for this reason, it has been
designed to be a versatile and scalable system, able to be quickly set-up and worldwide
implemented.

The system handles up to several tens of thousands charge sensitive channels (charges of both
polarities). Each channel stores into an analogue memory, a continuously sampled preconditioned
signal, while comparing its amplitude to a user-defined threshold. The number of channels over the
threshold and/or any other external condition triggers the sampling stop. The analogue memory
content is readout and coded, then the data is sorted, time-stamped, and extracted through µTCA
standard, to be directed to a computer-farm which further acts as an event builder.

Figure 1 : GET hardware architecture

GET hardware architecture is shown in figure 1: 4 Analogue-to-Digital Converters (ADC) as
well as 4 Application Specific Integrated Circuits (ASIC) for GET (AGET) are implemented on the
GET front-end board. Each AGET handles up to 64 channels of detection. The GET front-end

GET – Front End:AsAd physical data Reference: GET-AS-002-0009
 Revision: 0
Issue: 1 Last modified: -

page 10

2 Interfaces data
Figure 3 indicates the name and location of the different AsAd interfaces.

On the left side of the board, there are 4 ZAP interfaces which enable to connect the 4x64
analogue inputs of the board. Each group of 64 inputs is directly connected to one AGET. The
physical position of one AGET on the AsAd is defined by an index ranging from 0 to 3; the same
index applies to reference the ZAP which connects the AGET inputs. Knowing these indexes is
fundamental in order to perform a correct configuration of the board by slow-control.

The power supply interface connector is situated on the upper-right side of the board.

For the external instruments interface (or spybox interface) connector, it is positioned on the
lower right-side of the board.

The CoBo interface connector is located in the middle of the right side of the board. All the
I/O required to control AsAd are transmitted through this connector and most of them are directly
connected to the FPGA (ref ACTEL A3PE1500). All the digital outputs of the board coming from
the ADC (ref Texas Instruments ADS6422) are also transmitted through this connector.

The connectors’ references and their pins allocations are detailed in the following sub-
sections.

Figure 3 : Physical location of the interfaces and main parts of the board

AsAd	

AGET	 ASIC	
v  Mean features
Input current polarity: positive or negative
64 (72) analog channels
4 charge ranges/channel: 120 fC, 240 fC, 1 pC & 10 pC
16 peaking time values: 50 ns(100 ns) to 1(2) µs
512 (511) analog memory cells / channel
Fsampling: 1 MHz to 100 MHz; Fread: 25(20) MHz
Auto triggering : discriminator + threshold (DAC)
Multiplicity signal: analog OR of the 72 discri. outputs

v  Main features for the readout
•  Address of the hit channel(s)
•  3 readout modes:
All, hit or specific channels
•  Predefined number of analog cells /
trigger (1 to 512)

external 12-bit ADC
[ADS6422]

Serial Interface Mode CK In Test

SCA MANAGER SLOW CONTROL
W / R CK

TEST

AGET

512 cells

SCA FILTER

tpeak

CSA

1 channel

x6
4i

n

Charge range

DAC
Discri

inhibit

BUFFER

x68

Hit register
SCAwrite

Trigger pulse

•  Possibility to bypass the internal CSA
and to enter directly into the filter or
SCA inputs

MulXplicity	 	Multiplicity

9

1

10

210

310

Z (mm)
-300 -200 -100 0 100 200 300

X
(m

m
)

-300

-200

-100

0

100

200

300

Hit pattern
(1 signal with 10 beams)

(AsAd x ID) + AGET_ID
0 20 40 60 80 100 120

M
ul

tip
lic

ity
/A

G
ET

/E
ve

nt
s

0

5

10

15

106 K- beam/spill, 10-beam backgrounds with 10 us drift time.

�	�������
������

MulXplicity	Multiplicity with staggering

10

AGET1_ch1
AGET2_ch1
AGET1_ch2
AGET2_ch2

(AsAd x ID) + AGET_ID
0 20 40 60 80 100 120

M
ul

tip
lic

ity
/A

G
ET

/E
ve

nt
s

2

4

6

8

10

Average multiplicity is less than 10 hits/AGET

�	�������
������

Dead	 Xme	 esXmaXon	

(AsAd x ID) + AGET_ID
0 20 40 60 80 100 120

M
ul

tip
lic

ity
/A

G
ET

/E
ve

nt
s

2

4

6

8

10

Maximum	 mulXplicity	 per	 AGET	 :	 10	
Readout	 cells:	 	 512	
ADC	 readout	 rate:	 40nsec	 (25MHz)	
	
512cells	 x	 40	 nsec	 x	 (10ch	 +	 2ch	 (noise	 test))	 =	 246	 usec	 /	 event	
	 	

Fast	 clear	 funcXon	

Therefore, we request to add one more Lemo input in one of the following 2 methods.

1) Add one Lemo input in the back side

2) Use the inhibit Lemo input (“INH”) in the front panel. We do not need inhibit

signals. Probably experiments to use external 2nd level triggers do not need the

inhibit signals either.

3. Fast Clear Function

In J-PARC E42 experiment (for H-dibaryon search), an external 1st level trigger (JL1)

determined by external detectors, defines the timing to stop SCA sampling for good

event candidates. The signal is received by MUTANT as “L0” (from the Lemo input

“Treq/val”). Then an external 2nd level signal, which is also generated by external

detectors, either a 2nd level trigger (=JL2) for a good event to accept (~50 Psec after the

1st level trigger), or 2nd level clear (=JC2) for a bad event to reject (20~50 Psec after the

1st level trigger (in average 30 Psec). Timing of each event is different.).

Fig. 1: An ideal timing chart in J-PARC E42 experiment.

The rate of JL1 is ~ 10 k Hz. The rate of the JL2 is 0.1~1k (namely 1~10% of JL1),

depending on how good JL2 we can make. Therefore, we want to accept 100~1 k good

1. 1

st
 level trigger (JL1) ÆL0

ADC with JL2

drift time (~10Ps)

~ 250Ps (maximum channel)

3-b. 2nd level clear (JC2) (reject event)

~50+-10Ps (different event by event) delay

3-a. 2nd level trigger (JL2) (record event)

2. Stop Sampling

20~50 Ps (30Ps in average)

~50 Ps

ADC (250Ps)

~ 250Ps (maximum channel)
ADC with JC2 Stop ADC, restart sampling

DAQ	 efficiency	 esXmaXon	

•  (K-‐,p)	 elasXc	 :	 dominant	 background	 	 5-‐10	 kHz	
	
•  w/	 2nd	 level	 trigger	 (fast	 clear)	
– Rough	 mass	 selecXon	 for	 scalering	 parXcles	 	

depending on how good JL2 we can make. Therefore, we want to accept 100~1 k good
events in as high efficiency as possible out of 10 k events.
 We have in average the maximum multiplicity per AGET of 10. The ADC time for that
multiplicity is 512 cells x 40 nsec x (10 channels + 2 noise test channels)= 246 Psec, even
ignoring data sending time.
Let us assume 10 % JL2/JL1 ratio, namely we have JC2 rate of 9kHz, and JL2 rate of

1kHz. Suppose we have no fast clear function but we do ADC for every event, as in the
current GET scheme, it takes at least 250 Psec for each JC2 or JL2. The trigger
efficiency in this case is only 30 %;

𝜖 = 1
1 + 9k ∙ 250µμsec + 1k ∙ 250µμsec = 0.29

In case when we restart sampling just after ADC for JC2 (namely do not send data to
network if JC2 comes), we have the same low trigger efficiency.
In order to improve the DAQ speed of the current GET system, we must reject JC2

events much earlier.

The following two ways can be considered to resolve the problem;
A) Start ADC immediately after sampling has finished as the current GET scheme, but

abort ADC and restart sampling as soon as the JC2 comes.
B) Wait until the 2nd level signal comes before ADC. If the JC2 signal comes restart

sampling, and if JL2 comes start ADC.
Most of commercial ADC or TDC modules have fast clear functions, which are always
based on A), not on B). For slow ADC, Method A) is mandatory. To let GET be more
generic, the Fast Clear function is desirable.

In case of A), we can restart sampling in 30 Psec for fast clear, and ADC for the 2nd level
trigger takes 250 Psec. The trigger efficiency is;

𝜖 = 1
1 + 9k ∙ 30µμsec + 1k ∙ 250µμsec = 0.66

In case of B), we can restart sampling in 30 Psec for fast clear, and ADC for the JL2
takes additional JL2 delay of 50 Psec to be 300 Psec. The trigger efficiency is;

𝜖 = 1
1 + 9k ∙ 30µμsec + 1k ∙ 300µμsec = 0.64

Both methods improve the trigger efficiency by a factor of 2. The difference between HA
and HB is 3%, which looks small at a glance but in the experimental point of view, the
difference is significant for data statistics. In order to improve 3% in other method, we

depending on how good JL2 we can make. Therefore, we want to accept 100~1 k good
events in as high efficiency as possible out of 10 k events.
 We have in average the maximum multiplicity per AGET of 10. The ADC time for that
multiplicity is 512 cells x 40 nsec x (10 channels + 2 noise test channels)= 246 Psec, even
ignoring data sending time.
Let us assume 10 % JL2/JL1 ratio, namely we have JC2 rate of 9kHz, and JL2 rate of

1kHz. Suppose we have no fast clear function but we do ADC for every event, as in the
current GET scheme, it takes at least 250 Psec for each JC2 or JL2. The trigger
efficiency in this case is only 30 %;

𝜖 = 1
1 + 9k ∙ 250µμsec + 1k ∙ 250µμsec = 0.29

In case when we restart sampling just after ADC for JC2 (namely do not send data to
network if JC2 comes), we have the same low trigger efficiency.
In order to improve the DAQ speed of the current GET system, we must reject JC2

events much earlier.

The following two ways can be considered to resolve the problem;
A) Start ADC immediately after sampling has finished as the current GET scheme, but

abort ADC and restart sampling as soon as the JC2 comes.
B) Wait until the 2nd level signal comes before ADC. If the JC2 signal comes restart

sampling, and if JL2 comes start ADC.
Most of commercial ADC or TDC modules have fast clear functions, which are always
based on A), not on B). For slow ADC, Method A) is mandatory. To let GET be more
generic, the Fast Clear function is desirable.

In case of A), we can restart sampling in 30 Psec for fast clear, and ADC for the 2nd level
trigger takes 250 Psec. The trigger efficiency is;

𝜖 = 1
1 + 9k ∙ 30µμsec + 1k ∙ 250µμsec = 0.66

In case of B), we can restart sampling in 30 Psec for fast clear, and ADC for the JL2
takes additional JL2 delay of 50 Psec to be 300 Psec. The trigger efficiency is;

𝜖 = 1
1 + 9k ∙ 30µμsec + 1k ∙ 300µμsec = 0.64

Both methods improve the trigger efficiency by a factor of 2. The difference between HA
and HB is 3%, which looks small at a glance but in the experimental point of view, the
difference is significant for data statistics. In order to improve 3% in other method, we

34 CHAPTER 2. EXPERIMENTAL PROCEDURE

Address

diamond target

Charge Hodoscope (CH)

+ charge high momentum
+ charge low momentum
− charged particle

Spectrometer

Forward TOF hodoscope (FTOF)
× 24 pieces 24 sets(TOP & BOTTOM)

T2

CH # 1- # 12

FERA Driver (Lecroy 4301)

PLU
FTOF Hit Address

MLU (Memory Look Up)

Fe
ra

 b
it

FTOF hit Address
4 bits

arrangement

One combination roop end signal

Execution
All over

MLU
combination of CH & FTOF decoding

= momentum
7 bits

5 bits

TDC data
9 bits

for combination of CH & FTOF
= Mass (K) +

N
ex

t C
H

 a
dd

re
ss

 re
qu

es
t

mean timer

FERET (TFC * FERA)

FTOF # 17 - # 24

T2 (common stop)

FERET

DATA STACK

TDC DATA

4 bits

FTOF # 1 - # 16

FERET (TFC * FERA)

Magnet

CH hit address

TDC cut Mass
Trigger

×

(Lecroy 2375)

(Lecroy 2372)

(Lecroy 4303, 4300B) (Lecroy 4303, 4300B)

Figure 2.22: Logic scheme of the mass trigger.

J-‐PARC	 DAQへのGet	 system組み込み	

Overview	 of	 the	 HD	 DAQ	

Event
Builder

Event
Distributor

Online
analysis

Recorder

Message daemon

Front - end

Data flow

Control
/monitor

Front - endFront - endFront - end

controller

Event
Builder

Event
Distributor

Online
analysis

Recorder

Message daemon

Front - endFront - end

Data flow

Control
/monitor

Front - endFront - endFront - endFront - endFront - endFront - end

controller

DAQ screen

Fig. 1. Overview of the DAQ software

TCP/IP protocol.

Simple and compact sources
The core part of the data acquisition software is kept
small for easy maintenance and easy modification to
apply variety of experiments.

The popular standard ISO/POSIX, C, C++ were used in
the core part.
The DAQ software must continue to go across the op-
erating system upgrade. As exceptions, GUI was made
in Python, and the online monitor works with ROOT,
because GUI and the online monitor are modified to fit
applied experiments.

B. DATA PATH

DATA PATH consists of the following processes, Front-end
(FE) reads data from A/D devices and send them to a behind-
process. Event builder reads event fragments from the Front-
ends and build events and send built event data to behind-
process, Event distributor reads event data and provides them
to behind processes, Recorder reads event data and records
them to files, Online analyzer reads event data and displays
histograms. FE, Event builder, Event distributor and Recorder
communicate with the Controller via MESSAGE PATH. These
processes have a watchdog thread and report self-status to the
controller. Online analyzer is not controlled by Controller.

The data format of event fragments output by each DATA
PATH process is the same. DATA PATH process can connect
any other DATA PATH process output port freely. It is possible
to configure the DAQ systems from a minimum system using
a FE and a Online analyzer to larger system using many
FEs, Event builders which connected as the cascade, an Event
distributor, a Recorder and Online analyzers. The header of
the data is shown in TABLE II.

Almost DATA PATH processes have two state, IDLE and
RUNNING. The Basic motion of these processes is as follows.

TABLE II
DATA HEADER

0 Magic number (32bit)
1 Length of data (32bit, word unit)
2 Event number
3 Run number
4 Node ID
5 Event type
6 Number of data block
7 Data type

RB

RB

RB

RB

Sender
threadRB

Reader
thread

Reader
thread

Reader
thread

Reader
thread

Event
Builder
thread

Control thread

Event Builder
process

Front

Front

Front

Front

RB

RB

RB

RB

Sender
threadRB

Reader
thread

Reader
thread

Reader
thread

Reader
thread

Event
Builder
thread

Control thread

Event Builder
process

Front-end

Front-end

Front-end

Front-end

MESSAGE
PATH

Fig. 2. Schematic of the event builder process

The state changes from IDLE to RUNNING when the process
receives a START message from MESSAGE PATH. The state
changes from RUNNING to IDLE when the process receives
a STOP message from MESSAGE PATH. The process starts
the connection to the process in front of it and starts to
process its function when the state changes from IDLE to
RUNNING. The process closes connection and stops when
the state changes from RUNNING to IDLE.

1) Front-end (FE): FE reads data from the analog to digital
devices and sends data to the connected port. At the IDLE
state, FE process is waiting for connection. The state changes
from IDLE to RUNNING when other DATA PATH process
connects to FE’s data port. At the RUNNING state, FE process
waits for events and read data from the hardware and transports
data to the connection. The state changes from RUNNING to
IDLE when the data port connection is disconnected or FE
receives STOP command from MESSAGE PATH. Anybody
can write front-end programs easily from the skeleton sources.

2) Event Builder (EB): Event builder collects event frag-
ments from the FE processes which are distributed, on the
DAQ network and builds event and sends them to Event
distributor which is placed behind. EB has a host name and
port number list. EB connects all ports in its list and starts to
read data from each port at the state changes to RUNNING.
EB closes connections at the state changes to IDLE. Fig.2
shows the structure of EB process.

3) Event Distributor (ED): The function of the event dis-
tributor is to give out the complete event data to many behind-
processes such as the recorder and the online monitors. ED has
two port of data output; one is a recorder port and the other is
a monitor port. The recorder port gives all the data of event,
whereas the monitor port does not guarantee to gives all the
events. ED connects EB output port when the state changes
from IDLE to RUNNING. ED reads the built events from EB

Overview	 of	 the	 HD	 DAQ	

Event
Builder

Event
Distributor

Online
analysis

Recorder

Message daemon

Front - end

Data flow

Control
/monitor

Front - endFront - endFront - end

controller

Event
Builder

Event
Distributor

Online
analysis

Recorder

Message daemon

Front - endFront - end

Data flow

Control
/monitor

Front - endFront - endFront - endFront - endFront - endFront - end

controller

DAQ screen

Fig. 1. Overview of the DAQ software

TCP/IP protocol.

Simple and compact sources
The core part of the data acquisition software is kept
small for easy maintenance and easy modification to
apply variety of experiments.

The popular standard ISO/POSIX, C, C++ were used in
the core part.
The DAQ software must continue to go across the op-
erating system upgrade. As exceptions, GUI was made
in Python, and the online monitor works with ROOT,
because GUI and the online monitor are modified to fit
applied experiments.

B. DATA PATH

DATA PATH consists of the following processes, Front-end
(FE) reads data from A/D devices and send them to a behind-
process. Event builder reads event fragments from the Front-
ends and build events and send built event data to behind-
process, Event distributor reads event data and provides them
to behind processes, Recorder reads event data and records
them to files, Online analyzer reads event data and displays
histograms. FE, Event builder, Event distributor and Recorder
communicate with the Controller via MESSAGE PATH. These
processes have a watchdog thread and report self-status to the
controller. Online analyzer is not controlled by Controller.

The data format of event fragments output by each DATA
PATH process is the same. DATA PATH process can connect
any other DATA PATH process output port freely. It is possible
to configure the DAQ systems from a minimum system using
a FE and a Online analyzer to larger system using many
FEs, Event builders which connected as the cascade, an Event
distributor, a Recorder and Online analyzers. The header of
the data is shown in TABLE II.

Almost DATA PATH processes have two state, IDLE and
RUNNING. The Basic motion of these processes is as follows.

TABLE II
DATA HEADER

0 Magic number (32bit)
1 Length of data (32bit, word unit)
2 Event number
3 Run number
4 Node ID
5 Event type
6 Number of data block
7 Data type

RB

RB

RB

RB

Sender
threadRB

Reader
thread

Reader
thread

Reader
thread

Reader
thread

Event
Builder
thread

Control thread

Event Builder
process

Front

Front

Front

Front

RB

RB

RB

RB

Sender
threadRB

Reader
thread

Reader
thread

Reader
thread

Reader
thread

Event
Builder
thread

Control thread

Event Builder
process

Front-end

Front-end

Front-end

Front-end

MESSAGE
PATH

Fig. 2. Schematic of the event builder process

The state changes from IDLE to RUNNING when the process
receives a START message from MESSAGE PATH. The state
changes from RUNNING to IDLE when the process receives
a STOP message from MESSAGE PATH. The process starts
the connection to the process in front of it and starts to
process its function when the state changes from IDLE to
RUNNING. The process closes connection and stops when
the state changes from RUNNING to IDLE.

1) Front-end (FE): FE reads data from the analog to digital
devices and sends data to the connected port. At the IDLE
state, FE process is waiting for connection. The state changes
from IDLE to RUNNING when other DATA PATH process
connects to FE’s data port. At the RUNNING state, FE process
waits for events and read data from the hardware and transports
data to the connection. The state changes from RUNNING to
IDLE when the data port connection is disconnected or FE
receives STOP command from MESSAGE PATH. Anybody
can write front-end programs easily from the skeleton sources.

2) Event Builder (EB): Event builder collects event frag-
ments from the FE processes which are distributed, on the
DAQ network and builds event and sends them to Event
distributor which is placed behind. EB has a host name and
port number list. EB connects all ports in its list and starts to
read data from each port at the state changes to RUNNING.
EB closes connections at the state changes to IDLE. Fig.2
shows the structure of EB process.

3) Event Distributor (ED): The function of the event dis-
tributor is to give out the complete event data to many behind-
processes such as the recorder and the online monitors. ED has
two port of data output; one is a recorder port and the other is
a monitor port. The recorder port gives all the data of event,
whereas the monitor port does not guarantee to gives all the
events. ED connects EB output port when the state changes
from IDLE to RUNNING. ED reads the built events from EB

GET	
Front-‐end	

Cobo	 1	

Cobo	 2	

Cobo	 8	

・	
・	
・	

μTCA	

Overview	 of	 the	 HD	 DAQ	

Event
Builder

Event
Distributor

Online
analysis

Recorder

Message daemon

Front - end

Data flow

Control
/monitor

Front - endFront - endFront - end

controller

Event
Builder

Event
Distributor

Online
analysis

Recorder

Message daemon

Front - endFront - end

Data flow

Control
/monitor

Front - endFront - endFront - endFront - endFront - endFront - end

controller

DAQ screen

Fig. 1. Overview of the DAQ software

TCP/IP protocol.

Simple and compact sources
The core part of the data acquisition software is kept
small for easy maintenance and easy modification to
apply variety of experiments.

The popular standard ISO/POSIX, C, C++ were used in
the core part.
The DAQ software must continue to go across the op-
erating system upgrade. As exceptions, GUI was made
in Python, and the online monitor works with ROOT,
because GUI and the online monitor are modified to fit
applied experiments.

B. DATA PATH

DATA PATH consists of the following processes, Front-end
(FE) reads data from A/D devices and send them to a behind-
process. Event builder reads event fragments from the Front-
ends and build events and send built event data to behind-
process, Event distributor reads event data and provides them
to behind processes, Recorder reads event data and records
them to files, Online analyzer reads event data and displays
histograms. FE, Event builder, Event distributor and Recorder
communicate with the Controller via MESSAGE PATH. These
processes have a watchdog thread and report self-status to the
controller. Online analyzer is not controlled by Controller.

The data format of event fragments output by each DATA
PATH process is the same. DATA PATH process can connect
any other DATA PATH process output port freely. It is possible
to configure the DAQ systems from a minimum system using
a FE and a Online analyzer to larger system using many
FEs, Event builders which connected as the cascade, an Event
distributor, a Recorder and Online analyzers. The header of
the data is shown in TABLE II.

Almost DATA PATH processes have two state, IDLE and
RUNNING. The Basic motion of these processes is as follows.

TABLE II
DATA HEADER

0 Magic number (32bit)
1 Length of data (32bit, word unit)
2 Event number
3 Run number
4 Node ID
5 Event type
6 Number of data block
7 Data type

RB

RB

RB

RB

Sender
threadRB

Reader
thread

Reader
thread

Reader
thread

Reader
thread

Event
Builder
thread

Control thread

Event Builder
process

Front

Front

Front

Front

RB

RB

RB

RB

Sender
threadRB

Reader
thread

Reader
thread

Reader
thread

Reader
thread

Event
Builder
thread

Control thread

Event Builder
process

Front-end

Front-end

Front-end

Front-end

MESSAGE
PATH

Fig. 2. Schematic of the event builder process

The state changes from IDLE to RUNNING when the process
receives a START message from MESSAGE PATH. The state
changes from RUNNING to IDLE when the process receives
a STOP message from MESSAGE PATH. The process starts
the connection to the process in front of it and starts to
process its function when the state changes from IDLE to
RUNNING. The process closes connection and stops when
the state changes from RUNNING to IDLE.

1) Front-end (FE): FE reads data from the analog to digital
devices and sends data to the connected port. At the IDLE
state, FE process is waiting for connection. The state changes
from IDLE to RUNNING when other DATA PATH process
connects to FE’s data port. At the RUNNING state, FE process
waits for events and read data from the hardware and transports
data to the connection. The state changes from RUNNING to
IDLE when the data port connection is disconnected or FE
receives STOP command from MESSAGE PATH. Anybody
can write front-end programs easily from the skeleton sources.

2) Event Builder (EB): Event builder collects event frag-
ments from the FE processes which are distributed, on the
DAQ network and builds event and sends them to Event
distributor which is placed behind. EB has a host name and
port number list. EB connects all ports in its list and starts to
read data from each port at the state changes to RUNNING.
EB closes connections at the state changes to IDLE. Fig.2
shows the structure of EB process.

3) Event Distributor (ED): The function of the event dis-
tributor is to give out the complete event data to many behind-
processes such as the recorder and the online monitors. ED has
two port of data output; one is a recorder port and the other is
a monitor port. The recorder port gives all the data of event,
whereas the monitor port does not guarantee to gives all the
events. ED connects EB output port when the state changes
from IDLE to RUNNING. ED reads the built events from EB

Trigger	 &	 Event	 tag	
DistribuXon	 system	

J-‐PARC	 Trigger/Tag	 distribuXon	 system	

Master Trigger Module
(NIM)

SMP

KEK-VME TKO

TRIGGER

BUSY
TAG (20bit serial encoded)

VM
E

m
od

ul
e

VME bus

VME CAMAC/FERA

C
A

M
A

C
 m

od
ul

e

Repeater

Data way

C
O

PP
ER

C
O

PP
ER

C
O

PP
ER

C
O

PP
ER

VM
E

m
od

ul
e

G
O

N
G

TK
O

 R
M

SC
H

C
AM

AC
 C

.C
.

C
AM

AC
/F

ER
A

R
M

C
A

M
A

C
 m

od
ul

e

KE
K-

VM
E

R
M

KE
K-

VM
E

R
M

Fig. 6. Overview of the Trigger/Tag distribution system

TABLE IV
SIGNAL SPECIFICATION

Name Direction Description
TRIG1 Downstream Level 1 trigger
TRIG2 Downstream Level 2 trigger
CLEAR Downstream Fast clear
SPILL Downstream Flat top signal
BUSY Upstream Busy OR

RESERVE1 Downstream Reserve
RESERVE2 Upstream Reserve

TAG Downstream Serialized event number and spill number

slips and to miss the event building. The event tag is distributed
to front-end devices with the main trigger signal for these
purposes.

The system consists of the singular Master Trigger Module
(MTM), Receiver Modules (RM) for each read-out system,
and Repeater Module. The overview of the system is shown
in Fig.6. MTM and RM (or Repeater) are connected with two
STP category-six network cables and the trigger and the event
number are delivered via these cables. The event number is
serialized in a pair of cables. Trigger, Busy and some control
signals are delivered independently. All busy signals are evalu-
ated as simple ”or” logic. TABLE IV shows signals which are
delivered by TDS. The signals are driven by multi-drop LVDS
drivers. The event tag is serialized and transferred by National
Semiconductor DS99R105(Driver)/DS99R106(Receiver) [6].
The speed of the serialized lined is . The data transfer
delay time of the event tag is .

We can unify the event fragments in each read-out systems,
to use TDS,

A. Master Trigger Module (MTM)

MTM is developed as a NIM standard module according
to the requirement of the experiments. MTM controls the
trigger/busy handshake and the trigger timings. The basic
function of MTM is to pass the trigger timing signals along
to the STP cables. MTM generate a self-busy and
vetoes the level-1 trigger in its own. And MTM has a 12-bit
event counter and an 8-bit spill counter to manage the unique
event number. MTM displays counted event number and spill
number on its front-face. The input/output ports of MTM are

TABLE V
MTM PORTS

Name Direction Type
TCLK INPUT LEMO
TRIG1 INPUT LEMO
TRIG1 OUT OUTPUT LEMO
TRIG2 INPUT LEMO
TRIG2 OUT OUTPUT LEMO
SPILL INPUT LEMO
CLEAR INPUT LEMO
BUSY IN INPUT LEMO (2 ports)
BUSY OUT OUTPUT LEMO
SELF BUSY OUT OUTPUT LEMO
RESERVE1 INPUT LEMO
RESERVE2 OUTPUT LEMO
EN RESET INPUT LEMO
SN RESET INPUT LEMO
PORT-A OUTPUT RJ-45 (4 ports)
PORT-B OUTPUT RJ-45 (4 ports)

Fig. 7. Pictures of the NIM Master Trigger Module

Fig. 8. Picture of the Repeater module

summarized in TABLE V. The pictures of MTM are shown
in Fig.7.

B. Repeater

Repeater gives out six trigger/tag signal batches from a trig-
ger/tag signal batch. Repeater consists of LVDS signal buffers
and signal dividers. Repeater passes through the downstream
signals simply and evaluates ”or” logic about upstream signals.
The picture of Repeater is shown in Fig.8.

C. Receiver Module (RM)

RM receives the trigger/tag signals and distributes the
signals to each subsystem. RM is a slave module of each
subsystem and exports the tag data to the system controller
except for the KEK-VME case. In addition, RM converts the
trigger and busy signals from LVDS signals in the STP cables
to an adequate level signal of the subsystem. We develop
three types of RM for the front-end subsystem, TKO RM,
CAMAC/FERA RM and KEK-VME/VME RM.

GNN-570 NIM MASTER TRIGGER MODULE
NIM� �࠲ࠬࡑ �ࠟ࠻ ࡞ࡘࠫࡕ

⺑

J-PARC NIMޔߪࡓ࠹ಽ㈩ࠪࠬࠟ࠻↪ታ㛎ࡦࡠ࠼ࡂ ⷙᩰߩ Master Trigger Module㧔MTM㧕ޔߣVME

ⷙᩰ߿ TKO ⷙᩰߩߤߥ Receiver Module㧔RM㧕߮ FANOUT ᯏ⢻ࠍᜬߚߞ REPEATER ߹ࠇߐ᭴ᚑߢ

 ޕߔ

MTM 㧝㧞Bitߪ ߩ Event Number 㧤Bitߣ ߩ Spill Number ޔTRIGGER1ޔߡߒ࠭ࠗࠕࠪߒᚑ↢ࠍ

TRIGGER2ޔCLEARޔSPILL NUMBER INCREMENTޔRESERVE1ޔBUSYޔRESERVE2 㧣⒳߁ߣ

㘃ߩାภߣߚࠇߐ࠼࡞ࠪޔߦ CAT-5E ޔߡߞࠍ㧞ᧄ࡞ࡉࠤ

ᦨᄢ㧠♽⛔ߩ RM ߳ಽ㈩વㅍߩߘޕߔ߹ߒવㅍ〒㔌ߪ㧡㧜㨙એ߇น⢻ޕߔߢ

․ᓽޔ᭽
NIM ⷙᩰ� 2 ࡞ࡘࠫࡕ

NIM ାภᦨዊജࠬ࡞ࡄ� � 㧝㧡ns

Event Number Counter �ᵄᢙ࠻ࡦᦨ㜞ࠞ࠙ߩ � 㧤㧜㧜KHz

Spill Number Counter �ᵄᢙ࠻ࡦᦨ㜞ࠞ࠙ߩ � 㧝MHz

ᶖ⾌㔚ᵹ� 㧗㧢V� 㧢㧜㧜m㧭� � 㧙㧢V� 㧟㧣㧜㨙A

RJ45	 x2	

RJ
45
	 x
2	 RJ45	 x2	

GNF-0840 TRIGGER REPEATER
 � � � � � � � 䊃䊥䉧䊷䊝䉳䊠䊷䊦ାภಽ㈩ེ

⺑

TRIGGER REPEATER㧔࡞ࡘࠫࡕࠟ࠻ାภಽ㈩ེ㧕ޔߪ㧡㧜㨙એ㔌ߚࠇMASTER
TRIGGER MODULEࠟ࠻ߩࠄ߆ାภࠍฃାޔߒGPIO-RM߿TKO-RM╬� � 㧢♽⛔ߩ

 ޕߔߢ࡞ࡘࠫࡕࠆߔಽ㈩ߦ࡞ࡘࠫࡕࡃࠪ
ࠧ࠹ࠞߚࠇߐ࠼࡞ࠪߩA,B㧞ᧄߪାภࠟ࠻ޔࠅ߅ߡߒ↪ࠍRJ-45ߪߦ࠲ࠢࡀࠦ

5Eࠍ࡞ࡉࠤ↪ޔߡߒ㧤⒳㘃ߩMLVDSᏅേାภ߇વㅍޕߔ߹ࠇߐ
߇BUSYାภ␜↪LEDߦ⣁࠲ࠢࡀBࠦߩࠇߙࠇߘߣLEDߩPOWERߪߦ࡞ࡀࡄ࠻ࡦࡠࡈ

 ޕߔ߹ࠅ

․ᓽ
'+#�ⷙᩰᮡḰࠢ࠶� 㜞ߐ㧝࡙࠻࠶࠾�

�

᭽
A࡞ࡉࠤ㧔ోାภ߽ߣᵹࠄ߆ਅᵹ߳વㅍ㧕
䊏䊮⇟ภ䋨ᄸᢙ⇟䈏ᱜାภ䋩㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 ାภฬ㩷

㧝-㧞� � � � � � � � � � � � � � � SPILL NUMBER INCREMENT
㧟-㧢� � � � � � � � � � � � � � � TRIGGER 2
㧠-㧡� � � � � � � � � � � � � � � CLEAR
㧣-㧤� � � � � � � � � � � � � � � TRIGGER 1
B࡞ࡉࠤ㧔1-2,3-6ࠕࡍାภߪᵹࠄ߆ਅᵹ߳વㅍࠕࡍ8-5,7-4ޔାภߪਅᵹࠄ߆ᵹ߳વㅍ㧕
䊏䊮⇟ภ䋨ᄸᢙ⇟䈏ᱜାภ䋩㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 ାภฬ㩷

㧝-㧞� � � � � � � � � � SERIALIZED EVENT NUMBER AND SPILL NUMBER
㧟-㧢� � � � � � � � � � � � RESERVE 1
㧠-㧡� � � � � � � � � � � � BUSY
㧣-㧤� � � � � � � � � � � � RESERVE 2
�࠭ࠗࠨ � � 482㨤65㨤44㨙㨙
�⾰᧚ࠬࠤ � ࡒ࡞ࠕ
㊀㊂� � 㧦1.5K㧔ᥳቯ୯� 㧕
ᶖ⾌㔚ᵹ䋫䋵㪭㩷 㩷 䋱䋮䋲㪘㩷 䋨㪘㪚䉝䉻䊒䉺䊷↪䋩㩷

J-‐PARC	 Trigger/Tag	 distribuXon	 system	

Master Trigger Module
(NIM)

SMP

KEK-VME TKO

TRIGGER

BUSY
TAG (20bit serial encoded)

VM
E

m
od

ul
e

VME bus

VME CAMAC/FERA

C
A

M
A

C
 m

od
ul

e

Repeater

Data way

C
O

PP
ER

C
O

PP
ER

C
O

PP
ER

C
O

PP
ER

VM
E

m
od

ul
e

G
O

N
G

TK
O

 R
M

SC
H

C
AM

AC
 C

.C
.

C
AM

AC
/F

ER
A

R
M

C
A

M
A

C
 m

od
ul

e

KE
K-

VM
E

R
M

KE
K-

VM
E

R
M

Fig. 6. Overview of the Trigger/Tag distribution system

TABLE IV
SIGNAL SPECIFICATION

Name Direction Description
TRIG1 Downstream Level 1 trigger
TRIG2 Downstream Level 2 trigger
CLEAR Downstream Fast clear
SPILL Downstream Flat top signal
BUSY Upstream Busy OR

RESERVE1 Downstream Reserve
RESERVE2 Upstream Reserve

TAG Downstream Serialized event number and spill number

slips and to miss the event building. The event tag is distributed
to front-end devices with the main trigger signal for these
purposes.

The system consists of the singular Master Trigger Module
(MTM), Receiver Modules (RM) for each read-out system,
and Repeater Module. The overview of the system is shown
in Fig.6. MTM and RM (or Repeater) are connected with two
STP category-six network cables and the trigger and the event
number are delivered via these cables. The event number is
serialized in a pair of cables. Trigger, Busy and some control
signals are delivered independently. All busy signals are evalu-
ated as simple ”or” logic. TABLE IV shows signals which are
delivered by TDS. The signals are driven by multi-drop LVDS
drivers. The event tag is serialized and transferred by National
Semiconductor DS99R105(Driver)/DS99R106(Receiver) [6].
The speed of the serialized lined is . The data transfer
delay time of the event tag is .

We can unify the event fragments in each read-out systems,
to use TDS,

A. Master Trigger Module (MTM)

MTM is developed as a NIM standard module according
to the requirement of the experiments. MTM controls the
trigger/busy handshake and the trigger timings. The basic
function of MTM is to pass the trigger timing signals along
to the STP cables. MTM generate a self-busy and
vetoes the level-1 trigger in its own. And MTM has a 12-bit
event counter and an 8-bit spill counter to manage the unique
event number. MTM displays counted event number and spill
number on its front-face. The input/output ports of MTM are

TABLE V
MTM PORTS

Name Direction Type
TCLK INPUT LEMO
TRIG1 INPUT LEMO
TRIG1 OUT OUTPUT LEMO
TRIG2 INPUT LEMO
TRIG2 OUT OUTPUT LEMO
SPILL INPUT LEMO
CLEAR INPUT LEMO
BUSY IN INPUT LEMO (2 ports)
BUSY OUT OUTPUT LEMO
SELF BUSY OUT OUTPUT LEMO
RESERVE1 INPUT LEMO
RESERVE2 OUTPUT LEMO
EN RESET INPUT LEMO
SN RESET INPUT LEMO
PORT-A OUTPUT RJ-45 (4 ports)
PORT-B OUTPUT RJ-45 (4 ports)

Fig. 7. Pictures of the NIM Master Trigger Module

Fig. 8. Picture of the Repeater module

summarized in TABLE V. The pictures of MTM are shown
in Fig.7.

B. Repeater

Repeater gives out six trigger/tag signal batches from a trig-
ger/tag signal batch. Repeater consists of LVDS signal buffers
and signal dividers. Repeater passes through the downstream
signals simply and evaluates ”or” logic about upstream signals.
The picture of Repeater is shown in Fig.8.

C. Receiver Module (RM)

RM receives the trigger/tag signals and distributes the
signals to each subsystem. RM is a slave module of each
subsystem and exports the tag data to the system controller
except for the KEK-VME case. In addition, RM converts the
trigger and busy signals from LVDS signals in the STP cables
to an adequate level signal of the subsystem. We develop
three types of RM for the front-end subsystem, TKO RM,
CAMAC/FERA RM and KEK-VME/VME RM.

GET	

RM
	

M
U
TA

N
T	

uTCA	

Co
Bo
	

Co
Bo
	

RJ45	 x2	

Receiver	 module	 for	 the	 GET	 system	

•  VME	 GP-‐IO	 module	
–  FPGA	 for	 mulX	 purpose	
–  CPLD	 for	 VME	 access	

•  AddiXonal	 daughter	 card	
–  J-‐PARC	 Tag	 receiver	 (RJ45	 x2)	
–  16ch	 x	 2	 ECL	 out	 put	

•  FPGA	 firmware	 modificaXon	
–  Current:	 MTM	 -‐-‐-‐	 RM	 -‐-‐-‐	 VME	
– Mod:	 MTM	 -‐-‐-‐	 	 RM	 -‐-‐-‐	 CENTRUM	
interface	 on	 MUTANT	

ConnecXon	

gilles.wittwer@ganil.fr

GET training
 June 2nd-5th, 2014

Nishina Center - Riken, Japan

L0
INH

AUX ACCEPT(JP Mode)

Trigger Request
Dead Time

2 Logical Inspections

CENTRUM or JPARC coupling
or 5 sclaler counter inputs

Inter shelves connection
(between Master MUTANT et slave MUTANT)

Serial ports
attached

to each PPC440

Front panel
JTAG

Optical
Coupling
(with clock)

Copper Clock
I/O

To network

2 Logical Inspections at the back of MUTANT
+ 1 clock output (LEMO connectors)

All the signal are NIM and fast (F > 100 MHz)
Logic 0 -> 0 V
Logic 1 -> - 800 mV

Signal	 Assignments	
	
	 	 	 	 MUTANT	 	 	 	 	 	 	 	 	 	 	 	 	 J-‐PARC	
	
1:	 L0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Trigger	 1	
2:	 	 	 	 	 	 	 	 	 	 	 	 	 Fast	 Clear	
3:	 	 	 	 	 	 	 	 	 Trigger	 Request	
4:	 Dead	 Time	 	 	 	 	 	 	 	 	 	 Busy	
5:	 	 	 	 	 	 	 	 96bit	 event	 tag	

①	
②	

③	

④	

⑤	

J-‐PARC	 Tag	

CERNTRUM	 interface	 on	 MUTANT	

ORIGINAL CENTRUM information is based on a 96 bit frame

D<48> D<95>

48 bit time stamp 32 bit event number 16 bit check sum
D<47> D<16> D<15> D<0>

D<0>

D<1>

D<2>

D<3>

D<92>

D<93>

D<94>

D<95>

ACK

RTAG

D_IN<0>

CLK

D_IN<1>

D_IN<2>
D_IN<3>

MUTANT/CENTRUM
Internal logic

Details of CENTRUM interface on MUTANT front panel

Logic block diagram(RTL view)

G. WITTWER GAP/GANIL 20/01/2014

8	 bit	 spill	
number	

12	 bit	 event	
number	unused	 (=0)	 unused	 (=0)	 16	 bit	 check	 sum	

J-‐PARC	 event	 tag	 a^er	 converXng	 to	 the	 CERNTRUM	 structure	
D<95>	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 D<48>	 D<47>	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 D<16>	 D<15>	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 D<0>	 	 	 	 	

Chronograph	 for	 data	 transfer	
FPGA	 behavioral	 simulaXon	

Oscilloscope	 view	

Δ=770	 ns	

data[3:0]:	 LSB	

write	 strobe	

GET	 test	 bench	 @	 JAEA	
HypTPC	

ZAP	 (protecXon	 diodes)	

AsAd	
	 (4AGET	 chips,	 256ch)	

R-‐Cobo	
(Xillinx	 ML507)	

Control	 PC	

Pedestal	 (RMS:	 2.2ch/12bit)	

Summary	
•  We	 designed	 and	 developed	 a	 GEM-‐TPC	 with	 the	
gaXng	 grid	 (HypTPC)	 for	 J-‐APRC	 E42/E45	
–  1	 MHz	 K-‐	 beam	 is	 directly	 injected	 into	 the	 TPC.	

•  The	 GET	 system	 	 is	 adopted	 for	 HypTPC	 readout.	
–  CH	 mapping	 for	 moderate	 hit	 mulXplicity	 	 	 	 <-‐	 done	
–  Fast	 clear	 funcXon	 	 	 	 	 	 	 <-‐	 	 done	
–  J-‐PARC	 Event	 Tag	 Receiving	 	 	 	 	 <-‐	 	 done	
–  Frontend	 so^ware	 	 	 	 <-‐	 under	 development	

•  TPC	 test	 with	 full	 GET	 system	
–  July,	 2015	 -‐	

