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Search	  for	  H-‐dibaryon	  6-‐quark	  (uuddss)	  state	  in	  
	  12C(K-‐,	  K+)X	  at	  1.6	  GeV/c	  	

and above the ΛΛ threshold.

2. E42 Spectrometer

The proposed experiment (E42) will be carried out via (K−,K+) reaction off the nuclei at the K1.8
beamline of the hadron hall of the J-PARC ficility. E42 spectrometer consists with a large-acceptance
hyperon Time-Projection-Chamber and forward KURAMA spectrometer as shown in Fig. 1 (a). The
K− beam enters into a HypTPC, which measures all charged tracks from the ΛΛ decays or Λpπ−
decays as shown in Fig. 1 (b). Simultaneously, forward KURAMA spectrometer detects the forward
outgoing K+ particle with high momentum resolution.
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Fig. 1. A schematic view of the HypTPC with KURAMA spectrometer (a) and (b) shows a cross-sectioanl
view of TPC and typical event display of ΛΛ production.

The HypTPC has a cylindrical active volume of 500 mm diameter and 550 mm in length. The
K− beam injects a side of HypTPC and the electron drifts downward along the magnetic field. The
HypTPC can measure all charged particles and Λ decays from the 15 mm long diamond target with
almost 4π acceptance. The accpetance can be improved by locating the target 150 mm upstream of the
center of the TPC gas volume. The target holder has a thin copper strips in 2.5 mm pitch to provide
uniform electric field near the target. A gas electron multiplier (GEM) is employed to make a stable
operation. We had performed a test experiment to confirm an operation of the GEM amplification
with a high-count rate proton beam at RCNP. The GEM amplification can be operated up to 106 Hz
of beam intensity [8].

We have optimized the configuration of pad size and layer structure, as shown in Fig. 2 (a). The
pad width is about 2.5 mm and a length of inner pad is 9 mm, while an outer pad has 12.5 mm length.
The total number of pads is 5768. A General Electronics for TPC (GET) will be used in the pad
readout with an induced charge in the pads and a electron drift time. The performance of the readout
electronics depends on the multiplicity of the each GET board. The color in the Fig. 2 (a) shows the
readout section for one GET board, which has 256 channels for a board. We have taken into account
a multiplicity of the readout electronics and it is optimized to get a similar multiplicity for the each
GET board with various configuration of the readout electronics and have chosen this configuration
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J-‐PARC	  E45	
Measure	  p(π,	  2π)N	  to	  study	  baryon	  resonances	  
and	  search	  for	  hybrid	  baryon	  (qqqg)	  	
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J-PARC E45 

Hyp-TPC 

S beam 

Measure p(S,2S)N to study baryon resonances and search for 
hybrid baryon (qqqg)  
  S-p→S+S-n, S0S-p           2 charged particles + 1 neutral particle 
  S+p→S0S+p, S+S+n                                                                                    →missing mass technique 
  
 
�
S+- beam on liquid-hydrogen target 
(p= 0.73 – 2.0 GeV/c) 

Trigger with hodoscope 
 

H target 



Hyp(Hyperon)TPC	
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Hyp(Hyperon)TPC 
Shared by J-PARC E42 and E45 
Requirements 
• Large acceptance 

– Target inside TPC 
 
• High-rate operation (106 Hz/cm2 beams) 
     GEM and Gating Grid 
       Suppression of ion backflow causing E-field distortions  
       to less than5% 
 
• Good position resolution ~ 0.3mm rms 
     E and B in parallel 
     small pad size ~2.5 mm x 10 mm 
�

・ �S/K/p separation 
 Good dE/dx resolution 

– large number of pad planes 32 
      dE/dx dynamic range ~ 10 

Helmholtz magnet 

HypTPC 

AsAd 



HypTPC	  structure	
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HypTPC structure 
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Gating Grid wire 
GEM (3-layers) 
Pad plane 
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150  

target Drift  
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B
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/cm
 

Gas：Ar:CH4 90:10 
Drift velocity = 5.5cm/Ps 
Max drift length = 55cm 
Max drift time = 10Ps 
Sampling freq 40MHz 
512 SCA cellÆ12.8Ps 

Gas vessel 

Field cage (sensitive 
volume) 



Readout	  pads	  configuraXon	

2014/9/23 8 

• Inner planes (rings) 
2.1~2.7x9mm2 

#plane=10 
 
• Outer planes (rings) 
2.3~2.4x12.5mm2 

#plane=22 
Total #pad 5768 
 
• Average charge sharing 
= 3 pads / hit 

 
• Horizontal position 

resolution at B=1T 
< 0.3 mm  
(at drift length>10cm) 

520 

215.39 

520 

Pad configuration 

4 separate circuit boards (pad to bottom connectors) are 
combined 



GEM	  configuraXon	

2014/9/23 
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544 

544 

GEM configuration 

150 

・4 GEMs (277x277mm2)  
・3-layer GEM (50Pm+50Pm+100Pm) 

Hit distribution (GEANT) 

Electrode division 

•12.5 mm width (20 div.) 1 sheet 

•41mm width       (6 div.)  3 sheets 

・Suppress discharge rate 

・Minimize acceptance reduction in 
case an electrode is broken 

Beam 

Target position 



GEM	  gain	  and	  discharge	  rate	
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operation 

Discharge rate <= 10 / min 
 (between Cu foils within a GEM) GEM Gain~104 

Charge on pad (1cm length) 
=100x1.6x10-19x104 x 0.6(charge sharing) 

~100fC 
1.0pC range (AGET) Æ Dynamic range=10 

GEM gain and discharge rate 



HypTPC	  construcXon	HypTPC construction 

• Assembly at REPIC 
at Tateyama (Aug-
Sep 2014) 

• Completed (Sep 5) 
2014/9/23 13 



HypTPC	  test	HypTPC Test 

• Gas leak test and HV test (cathode plane, field 
wire, gating grid wires) complete (Sep 19) 

2014/9/23 14 



Requirements	  for	  HypTPC	  readout	

•  Readout	  ch:	  5768	  
•  Input	  charge:	  100	  –	  1000	  fC	  
•  Dri^	  Xme:	  10us	  (55cm)	  
•  ADC,	  TDC	  -‐>	  waveform	  sampling	  
•  	  ~1kHz	  DAQ	  rate	

GET	  readout	  system	



GET	

•  The	  General	  Electronics	  for	  Time	  projecXon	  
chambers	  

•  Developers	  

•  Users	  (Japan)	  
–  JAEA	  HypTPC,	  RIKEN	  Samurai-‐TPC	  



GET	  people	

June,	  2014	  @	  RIKEN	

Sep,	  2014	  @	  France	



GET	  components	
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1 GET basics: introduction 
 

The General Electronics for Time projection chambers (GET) is a system intended to provide 
the nuclear physicists with a complete solution to carry out experiments requiring gaseous detectors 
with a segmented-plane. GET scope starts from the analogue signals processing to go up to 
computer-aided event reconstruction. It was developed within the framework of an international 
project that grew from different needs of several nuclear physicists and for this reason, it has been 
designed to be a versatile and scalable system, able to be quickly set-up and worldwide 
implemented.  

The system handles up to several tens of thousands charge sensitive channels (charges of both 
polarities). Each channel stores into an analogue memory, a continuously sampled preconditioned 
signal, while comparing its amplitude to a user-defined threshold. The number of channels over the 
threshold and/or any other external condition triggers the sampling stop. The analogue memory 
content is readout and coded, then the data is sorted, time-stamped, and extracted through µTCA 
standard, to be directed to a computer-farm which further acts as an event builder. 

 

 
 

Figure 1 : GET hardware architecture 
 

GET hardware architecture is shown in figure 1: 4 Analogue-to-Digital Converters (ADC) as 
well as 4 Application Specific Integrated Circuits (ASIC) for GET (AGET) are implemented on the 
GET front-end board. Each AGET handles up to 64 channels of detection. The GET front-end 
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Figure 1 : GET hardware architecture 
 

GET hardware architecture is shown in figure 1: 4 Analogue-to-Digital Converters (ADC) as 
well as 4 Application Specific Integrated Circuits (ASIC) for GET (AGET) are implemented on the 
GET front-end board. Each AGET handles up to 64 channels of detection. The GET front-end 

CoBo	 Mutant	MCH	  

μTCA	  crate	  
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2 Interfaces data 
Figure 3 indicates the name and location of the different AsAd interfaces.  

On the left side of the board, there are 4 ZAP interfaces which enable to connect the 4x64 
analogue inputs of the board. Each group of 64 inputs is directly connected to one AGET.  The 
physical position of one AGET on the AsAd is defined by an index ranging from 0 to 3; the same 
index applies to reference the ZAP which connects the AGET inputs. Knowing these indexes is 
fundamental in order to perform a correct configuration of the board by slow-control. 

The power supply interface connector is situated on the upper-right side of the board. 

For the external instruments interface (or spybox interface) connector, it is positioned on the 
lower right-side of the board. 

The CoBo interface connector is located in the middle of the right side of the board. All the 
I/O required to control AsAd are transmitted through this connector and most of them are directly 
connected to the FPGA (ref ACTEL A3PE1500). All the digital outputs of the board coming from 
the ADC (ref Texas Instruments ADS6422) are also transmitted through this connector. 

The   connectors’   references   and   their pins allocations are detailed in the following sub-
sections. 

 
 

Figure 3 : Physical location of the interfaces and main parts of the board 
 

AsAd	



AGET	  ASIC	
v  Mean features  
Input current polarity: positive or negative  
64 (72) analog channels 
4 charge ranges/channel: 120 fC, 240 fC, 1 pC & 10 pC 
16 peaking time values: 50 ns(100 ns) to 1(2) µs 
512 (511) analog memory cells / channel 
Fsampling: 1 MHz to 100 MHz; Fread: 25(20) MHz  
Auto triggering : discriminator + threshold (DAC) 
Multiplicity signal: analog OR of the 72 discri. outputs 

v  Main features for the readout  
•  Address of the hit channel(s) 
•  3 readout modes: 
All, hit or specific channels 
•  Predefined number of analog cells / 
trigger (1 to 512) 
 

external 12-bit ADC 
[ADS6422] 

Serial Interface Mode CK In Test 

SCA MANAGER SLOW CONTROL 
W / R CK 

TEST 

AGET 

512 cells 

SCA FILTER 

tpeak 

CSA 

1 channel 

x6
4i

n 

Charge range 

DAC 
Discri 

inhibit 

BUFFER 

x68 

Hit register 
SCAwrite 

Trigger pulse 

•  Possibility to bypass the internal CSA 
and to enter directly into the filter or 
SCA inputs 



MulXplicity	  	Multiplicity
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MulXplicity	Multiplicity with staggering
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Dead	  Xme	  esXmaXon	
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Maximum	  mulXplicity	  per	  AGET	  :	  10	  
Readout	  cells:	  	  512	  
ADC	  readout	  rate:	  40nsec	  (25MHz)	  
	  
512cells	  x	  40	  nsec	  x	  (10ch	  +	  2ch	  (noise	  test))	  =	  246	  usec	  /	  event	  
	  	



Fast	  clear	  funcXon	

 

Therefore, we request to add one more Lemo input in one of the following 2 methods. 

1) Add one Lemo input in the back side 

2) Use the inhibit Lemo input (“INH”) in the front panel. We do not need inhibit 

signals. Probably experiments to use external 2nd level triggers do not need the 

inhibit signals either. 

 

3. Fast Clear Function 

 

In J-PARC E42 experiment (for H-dibaryon search), an external 1st level trigger (JL1) 

determined by external detectors, defines the timing to stop SCA sampling for good 

event candidates. The signal is received by MUTANT as “L0” (from the Lemo input 

“Treq/val”). Then an external 2nd level signal, which is also generated by external 

detectors, either a 2nd level trigger (=JL2) for a good event to accept (~50 Psec after the 

1st level trigger), or 2nd level clear (=JC2) for a bad event to reject (20~50 Psec after the 

1st level trigger (in average 30 Psec). Timing of each event is different.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: An ideal timing chart in J-PARC E42 experiment. 

 

The rate of JL1 is ~ 10 k Hz. The rate of the JL2 is 0.1~1k (namely 1~10% of JL1), 

depending on how good JL2 we can make. Therefore, we want to accept 100~1 k good 

 

 
1. 1

st
 level trigger (JL1) ÆL0 

ADC with JL2 

drift time (~10Ps) 

~ 250Ps (maximum channel) 

3-b. 2nd level clear (JC2) (reject event) 

 

~50+-10Ps (different event by event) delay 

3-a. 2nd level trigger (JL2) (record event) 

2. Stop Sampling 

20~50 Ps (30Ps in average) 

~50 Ps 

ADC (250Ps) 

 

~ 250Ps (maximum channel) 
ADC with JC2 Stop ADC, restart sampling 



DAQ	  efficiency	  esXmaXon	

•  (K-‐,p)	  elasXc	  :	  dominant	  background	  	  5-‐10	  kHz	  
	  
•  w/	  2nd	  level	  trigger	  (fast	  clear)	  
– Rough	  mass	  selecXon	  for	  scalering	  parXcles	  	

depending on how good JL2 we can make. Therefore, we want to accept 100~1 k good 
events in as high efficiency as possible out of 10 k events.  
 We have in average the maximum multiplicity per AGET of 10. The ADC time for that 
multiplicity is 512 cells x 40 nsec x (10 channels + 2 noise test channels)= 246 Psec, even 
ignoring data sending time.  
Let us assume 10 % JL2/JL1 ratio, namely we have JC2 rate of 9kHz, and JL2 rate of 

1kHz. Suppose we have no fast clear function but we do ADC for every event, as in the 
current GET scheme, it takes at least 250 Psec for each JC2 or JL2. The trigger 
efficiency in this case is only 30 %; 

𝜖 = 1
1 + 9k ∙ 250µμsec + 1k ∙ 250µμsec = 0.29 

In case when we restart sampling just after ADC for JC2 (namely do not send data to 
network if JC2 comes), we have the same low trigger efficiency. 
In order to improve the DAQ speed of the current GET system, we must reject JC2 

events much earlier. 
 
The following two ways can be considered to resolve the problem; 
A) Start ADC immediately after sampling has finished as the current GET scheme, but 

abort ADC and restart sampling as soon as the JC2 comes. 
B) Wait until the 2nd level signal comes before ADC. If the JC2 signal comes restart 

sampling, and if JL2 comes start ADC. 
Most of commercial ADC or TDC modules have fast clear functions, which are always 
based on A), not on B). For slow ADC, Method A) is mandatory. To let GET be more 
generic, the Fast Clear function is desirable. 
 
In case of A), we can restart sampling in 30 Psec for fast clear, and ADC for the 2nd level 
trigger takes 250 Psec. The trigger efficiency is; 

𝜖 = 1
1 + 9k ∙ 30µμsec + 1k ∙ 250µμsec = 0.66 

In case of B), we can restart sampling in 30 Psec for fast clear, and ADC for the JL2 
takes additional JL2 delay of 50 Psec to be 300 Psec. The trigger efficiency is; 

𝜖 = 1
1 + 9k ∙ 30µμsec + 1k ∙ 300µμsec = 0.64 

Both methods improve the trigger efficiency by a factor of 2. The difference between HA 
and HB is 3%, which looks small at a glance but in the experimental point of view, the 
difference is significant for data statistics. In order to improve 3% in other method, we 
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J-‐PARC	  DAQへのGet	  system組み込み	



Overview	  of	  the	  HD	  DAQ	

Event
Builder
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Recorder

Message daemon
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Data flow

Control
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Event
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Event
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analysis

Recorder

Message daemon

Front - endFront - end

Data flow

Control
/monitor

Front - endFront - endFront - endFront - endFront - endFront - end

controller

DAQ screen

Fig. 1. Overview of the DAQ software

TCP/IP protocol.

Simple and compact sources
The core part of the data acquisition software is kept
small for easy maintenance and easy modification to
apply variety of experiments.

The popular standard ISO/POSIX, C, C++ were used in
the core part.
The DAQ software must continue to go across the op-
erating system upgrade. As exceptions, GUI was made
in Python, and the online monitor works with ROOT,
because GUI and the online monitor are modified to fit
applied experiments.

B. DATA PATH

DATA PATH consists of the following processes, Front-end
(FE) reads data from A/D devices and send them to a behind-
process. Event builder reads event fragments from the Front-
ends and build events and send built event data to behind-
process, Event distributor reads event data and provides them
to behind processes, Recorder reads event data and records
them to files, Online analyzer reads event data and displays
histograms. FE, Event builder, Event distributor and Recorder
communicate with the Controller via MESSAGE PATH. These
processes have a watchdog thread and report self-status to the
controller. Online analyzer is not controlled by Controller.

The data format of event fragments output by each DATA
PATH process is the same. DATA PATH process can connect
any other DATA PATH process output port freely. It is possible
to configure the DAQ systems from a minimum system using
a FE and a Online analyzer to larger system using many
FEs, Event builders which connected as the cascade, an Event
distributor, a Recorder and Online analyzers. The header of
the data is shown in TABLE II.

Almost DATA PATH processes have two state, IDLE and
RUNNING. The Basic motion of these processes is as follows.

TABLE II
DATA HEADER

0 Magic number (32bit)
1 Length of data (32bit, word unit)
2 Event number
3 Run number
4 Node ID
5 Event type
6 Number of data block
7 Data type
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The state changes from IDLE to RUNNING when the process
receives a START message from MESSAGE PATH. The state
changes from RUNNING to IDLE when the process receives
a STOP message from MESSAGE PATH. The process starts
the connection to the process in front of it and starts to
process its function when the state changes from IDLE to
RUNNING. The process closes connection and stops when
the state changes from RUNNING to IDLE.

1) Front-end (FE): FE reads data from the analog to digital
devices and sends data to the connected port. At the IDLE
state, FE process is waiting for connection. The state changes
from IDLE to RUNNING when other DATA PATH process
connects to FE’s data port. At the RUNNING state, FE process
waits for events and read data from the hardware and transports
data to the connection. The state changes from RUNNING to
IDLE when the data port connection is disconnected or FE
receives STOP command from MESSAGE PATH. Anybody
can write front-end programs easily from the skeleton sources.

2) Event Builder (EB): Event builder collects event frag-
ments from the FE processes which are distributed, on the
DAQ network and builds event and sends them to Event
distributor which is placed behind. EB has a host name and
port number list. EB connects all ports in its list and starts to
read data from each port at the state changes to RUNNING.
EB closes connections at the state changes to IDLE. Fig.2
shows the structure of EB process.

3) Event Distributor (ED): The function of the event dis-
tributor is to give out the complete event data to many behind-
processes such as the recorder and the online monitors. ED has
two port of data output; one is a recorder port and the other is
a monitor port. The recorder port gives all the data of event,
whereas the monitor port does not guarantee to gives all the
events. ED connects EB output port when the state changes
from IDLE to RUNNING. ED reads the built events from EB
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TCP/IP protocol.

Simple and compact sources
The core part of the data acquisition software is kept
small for easy maintenance and easy modification to
apply variety of experiments.

The popular standard ISO/POSIX, C, C++ were used in
the core part.
The DAQ software must continue to go across the op-
erating system upgrade. As exceptions, GUI was made
in Python, and the online monitor works with ROOT,
because GUI and the online monitor are modified to fit
applied experiments.

B. DATA PATH

DATA PATH consists of the following processes, Front-end
(FE) reads data from A/D devices and send them to a behind-
process. Event builder reads event fragments from the Front-
ends and build events and send built event data to behind-
process, Event distributor reads event data and provides them
to behind processes, Recorder reads event data and records
them to files, Online analyzer reads event data and displays
histograms. FE, Event builder, Event distributor and Recorder
communicate with the Controller via MESSAGE PATH. These
processes have a watchdog thread and report self-status to the
controller. Online analyzer is not controlled by Controller.

The data format of event fragments output by each DATA
PATH process is the same. DATA PATH process can connect
any other DATA PATH process output port freely. It is possible
to configure the DAQ systems from a minimum system using
a FE and a Online analyzer to larger system using many
FEs, Event builders which connected as the cascade, an Event
distributor, a Recorder and Online analyzers. The header of
the data is shown in TABLE II.

Almost DATA PATH processes have two state, IDLE and
RUNNING. The Basic motion of these processes is as follows.

TABLE II
DATA HEADER

0 Magic number (32bit)
1 Length of data (32bit, word unit)
2 Event number
3 Run number
4 Node ID
5 Event type
6 Number of data block
7 Data type
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The state changes from IDLE to RUNNING when the process
receives a START message from MESSAGE PATH. The state
changes from RUNNING to IDLE when the process receives
a STOP message from MESSAGE PATH. The process starts
the connection to the process in front of it and starts to
process its function when the state changes from IDLE to
RUNNING. The process closes connection and stops when
the state changes from RUNNING to IDLE.

1) Front-end (FE): FE reads data from the analog to digital
devices and sends data to the connected port. At the IDLE
state, FE process is waiting for connection. The state changes
from IDLE to RUNNING when other DATA PATH process
connects to FE’s data port. At the RUNNING state, FE process
waits for events and read data from the hardware and transports
data to the connection. The state changes from RUNNING to
IDLE when the data port connection is disconnected or FE
receives STOP command from MESSAGE PATH. Anybody
can write front-end programs easily from the skeleton sources.

2) Event Builder (EB): Event builder collects event frag-
ments from the FE processes which are distributed, on the
DAQ network and builds event and sends them to Event
distributor which is placed behind. EB has a host name and
port number list. EB connects all ports in its list and starts to
read data from each port at the state changes to RUNNING.
EB closes connections at the state changes to IDLE. Fig.2
shows the structure of EB process.

3) Event Distributor (ED): The function of the event dis-
tributor is to give out the complete event data to many behind-
processes such as the recorder and the online monitors. ED has
two port of data output; one is a recorder port and the other is
a monitor port. The recorder port gives all the data of event,
whereas the monitor port does not guarantee to gives all the
events. ED connects EB output port when the state changes
from IDLE to RUNNING. ED reads the built events from EB
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TCP/IP protocol.

Simple and compact sources
The core part of the data acquisition software is kept
small for easy maintenance and easy modification to
apply variety of experiments.

The popular standard ISO/POSIX, C, C++ were used in
the core part.
The DAQ software must continue to go across the op-
erating system upgrade. As exceptions, GUI was made
in Python, and the online monitor works with ROOT,
because GUI and the online monitor are modified to fit
applied experiments.

B. DATA PATH

DATA PATH consists of the following processes, Front-end
(FE) reads data from A/D devices and send them to a behind-
process. Event builder reads event fragments from the Front-
ends and build events and send built event data to behind-
process, Event distributor reads event data and provides them
to behind processes, Recorder reads event data and records
them to files, Online analyzer reads event data and displays
histograms. FE, Event builder, Event distributor and Recorder
communicate with the Controller via MESSAGE PATH. These
processes have a watchdog thread and report self-status to the
controller. Online analyzer is not controlled by Controller.

The data format of event fragments output by each DATA
PATH process is the same. DATA PATH process can connect
any other DATA PATH process output port freely. It is possible
to configure the DAQ systems from a minimum system using
a FE and a Online analyzer to larger system using many
FEs, Event builders which connected as the cascade, an Event
distributor, a Recorder and Online analyzers. The header of
the data is shown in TABLE II.

Almost DATA PATH processes have two state, IDLE and
RUNNING. The Basic motion of these processes is as follows.

TABLE II
DATA HEADER

0 Magic number (32bit)
1 Length of data (32bit, word unit)
2 Event number
3 Run number
4 Node ID
5 Event type
6 Number of data block
7 Data type
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The state changes from IDLE to RUNNING when the process
receives a START message from MESSAGE PATH. The state
changes from RUNNING to IDLE when the process receives
a STOP message from MESSAGE PATH. The process starts
the connection to the process in front of it and starts to
process its function when the state changes from IDLE to
RUNNING. The process closes connection and stops when
the state changes from RUNNING to IDLE.

1) Front-end (FE): FE reads data from the analog to digital
devices and sends data to the connected port. At the IDLE
state, FE process is waiting for connection. The state changes
from IDLE to RUNNING when other DATA PATH process
connects to FE’s data port. At the RUNNING state, FE process
waits for events and read data from the hardware and transports
data to the connection. The state changes from RUNNING to
IDLE when the data port connection is disconnected or FE
receives STOP command from MESSAGE PATH. Anybody
can write front-end programs easily from the skeleton sources.

2) Event Builder (EB): Event builder collects event frag-
ments from the FE processes which are distributed, on the
DAQ network and builds event and sends them to Event
distributor which is placed behind. EB has a host name and
port number list. EB connects all ports in its list and starts to
read data from each port at the state changes to RUNNING.
EB closes connections at the state changes to IDLE. Fig.2
shows the structure of EB process.

3) Event Distributor (ED): The function of the event dis-
tributor is to give out the complete event data to many behind-
processes such as the recorder and the online monitors. ED has
two port of data output; one is a recorder port and the other is
a monitor port. The recorder port gives all the data of event,
whereas the monitor port does not guarantee to gives all the
events. ED connects EB output port when the state changes
from IDLE to RUNNING. ED reads the built events from EB
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Fig. 6. Overview of the Trigger/Tag distribution system

TABLE IV
SIGNAL SPECIFICATION

Name Direction Description
TRIG1 Downstream Level 1 trigger
TRIG2 Downstream Level 2 trigger
CLEAR Downstream Fast clear
SPILL Downstream Flat top signal
BUSY Upstream Busy OR

RESERVE1 Downstream Reserve
RESERVE2 Upstream Reserve

TAG Downstream Serialized event number and spill number

slips and to miss the event building. The event tag is distributed
to front-end devices with the main trigger signal for these
purposes.

The system consists of the singular Master Trigger Module
(MTM), Receiver Modules (RM) for each read-out system,
and Repeater Module. The overview of the system is shown
in Fig.6. MTM and RM (or Repeater) are connected with two
STP category-six network cables and the trigger and the event
number are delivered via these cables. The event number is
serialized in a pair of cables. Trigger, Busy and some control
signals are delivered independently. All busy signals are evalu-
ated as simple ”or” logic. TABLE IV shows signals which are
delivered by TDS. The signals are driven by multi-drop LVDS
drivers. The event tag is serialized and transferred by National
Semiconductor DS99R105(Driver)/DS99R106(Receiver) [6].
The speed of the serialized lined is . The data transfer
delay time of the event tag is .

We can unify the event fragments in each read-out systems,
to use TDS,

A. Master Trigger Module (MTM)

MTM is developed as a NIM standard module according
to the requirement of the experiments. MTM controls the
trigger/busy handshake and the trigger timings. The basic
function of MTM is to pass the trigger timing signals along
to the STP cables. MTM generate a self-busy and
vetoes the level-1 trigger in its own. And MTM has a 12-bit
event counter and an 8-bit spill counter to manage the unique
event number. MTM displays counted event number and spill
number on its front-face. The input/output ports of MTM are

TABLE V
MTM PORTS

Name Direction Type
TCLK INPUT LEMO
TRIG1 INPUT LEMO
TRIG1 OUT OUTPUT LEMO
TRIG2 INPUT LEMO
TRIG2 OUT OUTPUT LEMO
SPILL INPUT LEMO
CLEAR INPUT LEMO
BUSY IN INPUT LEMO (2 ports)
BUSY OUT OUTPUT LEMO
SELF BUSY OUT OUTPUT LEMO
RESERVE1 INPUT LEMO
RESERVE2 OUTPUT LEMO
EN RESET INPUT LEMO
SN RESET INPUT LEMO
PORT-A OUTPUT RJ-45 (4 ports)
PORT-B OUTPUT RJ-45 (4 ports)

Fig. 7. Pictures of the NIM Master Trigger Module

Fig. 8. Picture of the Repeater module

summarized in TABLE V. The pictures of MTM are shown
in Fig.7.

B. Repeater

Repeater gives out six trigger/tag signal batches from a trig-
ger/tag signal batch. Repeater consists of LVDS signal buffers
and signal dividers. Repeater passes through the downstream
signals simply and evaluates ”or” logic about upstream signals.
The picture of Repeater is shown in Fig.8.

C. Receiver Module (RM)

RM receives the trigger/tag signals and distributes the
signals to each subsystem. RM is a slave module of each
subsystem and exports the tag data to the system controller
except for the KEK-VME case. In addition, RM converts the
trigger and busy signals from LVDS signals in the STP cables
to an adequate level signal of the subsystem. We develop
three types of RM for the front-end subsystem, TKO RM,
CAMAC/FERA RM and KEK-VME/VME RM.
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Fig. 6. Overview of the Trigger/Tag distribution system

TABLE IV
SIGNAL SPECIFICATION

Name Direction Description
TRIG1 Downstream Level 1 trigger
TRIG2 Downstream Level 2 trigger
CLEAR Downstream Fast clear
SPILL Downstream Flat top signal
BUSY Upstream Busy OR

RESERVE1 Downstream Reserve
RESERVE2 Upstream Reserve

TAG Downstream Serialized event number and spill number

slips and to miss the event building. The event tag is distributed
to front-end devices with the main trigger signal for these
purposes.

The system consists of the singular Master Trigger Module
(MTM), Receiver Modules (RM) for each read-out system,
and Repeater Module. The overview of the system is shown
in Fig.6. MTM and RM (or Repeater) are connected with two
STP category-six network cables and the trigger and the event
number are delivered via these cables. The event number is
serialized in a pair of cables. Trigger, Busy and some control
signals are delivered independently. All busy signals are evalu-
ated as simple ”or” logic. TABLE IV shows signals which are
delivered by TDS. The signals are driven by multi-drop LVDS
drivers. The event tag is serialized and transferred by National
Semiconductor DS99R105(Driver)/DS99R106(Receiver) [6].
The speed of the serialized lined is . The data transfer
delay time of the event tag is .

We can unify the event fragments in each read-out systems,
to use TDS,

A. Master Trigger Module (MTM)

MTM is developed as a NIM standard module according
to the requirement of the experiments. MTM controls the
trigger/busy handshake and the trigger timings. The basic
function of MTM is to pass the trigger timing signals along
to the STP cables. MTM generate a self-busy and
vetoes the level-1 trigger in its own. And MTM has a 12-bit
event counter and an 8-bit spill counter to manage the unique
event number. MTM displays counted event number and spill
number on its front-face. The input/output ports of MTM are

TABLE V
MTM PORTS

Name Direction Type
TCLK INPUT LEMO
TRIG1 INPUT LEMO
TRIG1 OUT OUTPUT LEMO
TRIG2 INPUT LEMO
TRIG2 OUT OUTPUT LEMO
SPILL INPUT LEMO
CLEAR INPUT LEMO
BUSY IN INPUT LEMO (2 ports)
BUSY OUT OUTPUT LEMO
SELF BUSY OUT OUTPUT LEMO
RESERVE1 INPUT LEMO
RESERVE2 OUTPUT LEMO
EN RESET INPUT LEMO
SN RESET INPUT LEMO
PORT-A OUTPUT RJ-45 (4 ports)
PORT-B OUTPUT RJ-45 (4 ports)

Fig. 7. Pictures of the NIM Master Trigger Module

Fig. 8. Picture of the Repeater module

summarized in TABLE V. The pictures of MTM are shown
in Fig.7.

B. Repeater

Repeater gives out six trigger/tag signal batches from a trig-
ger/tag signal batch. Repeater consists of LVDS signal buffers
and signal dividers. Repeater passes through the downstream
signals simply and evaluates ”or” logic about upstream signals.
The picture of Repeater is shown in Fig.8.

C. Receiver Module (RM)

RM receives the trigger/tag signals and distributes the
signals to each subsystem. RM is a slave module of each
subsystem and exports the tag data to the system controller
except for the KEK-VME case. In addition, RM converts the
trigger and busy signals from LVDS signals in the STP cables
to an adequate level signal of the subsystem. We develop
three types of RM for the front-end subsystem, TKO RM,
CAMAC/FERA RM and KEK-VME/VME RM.
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Receiver	  module	  for	  the	  GET	  system	

•  VME	  GP-‐IO	  module	  
–  FPGA	  for	  mulX	  purpose	  
–  CPLD	  for	  VME	  access	  

•  AddiXonal	  daughter	  card	  
–  J-‐PARC	  Tag	  receiver	  (RJ45	  x2)	  
–  16ch	  x	  2	  ECL	  out	  put	  

•  FPGA	  firmware	  modificaXon	  
–  Current:	  MTM	  -‐-‐-‐	  RM	  -‐-‐-‐	  VME	  
– Mod:	  MTM	  -‐-‐-‐	  	  RM	  -‐-‐-‐	  CENTRUM	  
interface	  on	  MUTANT	



ConnecXon	
  

gilles.wittwer@ganil.fr 

GET training 
 June 2nd-5th, 2014 

Nishina Center - Riken, Japan 

L0 
INH 

AUX ACCEPT(JP Mode) 

Trigger Request 
Dead Time 

2 Logical Inspections 

CENTRUM or JPARC coupling 
or 5 sclaler counter inputs 

Inter shelves connection 
(between Master MUTANT et slave MUTANT)  

Serial ports 
attached 

to each PPC440 

Front panel 
JTAG 

Optical 
Coupling 
(with clock) 

Copper Clock 
I/O 

To network 

2 Logical Inspections at the back of MUTANT 
+ 1 clock output (LEMO connectors) 

All the signal are NIM and fast (F > 100 MHz) 
Logic 0 ->   0 V 
Logic 1 -> - 800 mV 

Signal	  Assignments	  
	  
	  	  	  	  MUTANT	  	  	  	  	  	  	  	  	  	  	  	  	  J-‐PARC	  
	  
1:	  L0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Trigger	  1	  
2:	  	  	  	  	  	  	  	  	  	  	  	  	  Fast	  Clear	  
3:	  	  	  	  	  	  	  	  	  Trigger	  Request	  
4:	  Dead	  Time	  	  	  	  	  	  	  	  	  	  Busy	  
5:	  	  	  	  	  	  	  	  96bit	  event	  tag	

①	
②	

③	

④	

⑤	

J-‐PARC	  Tag	



CERNTRUM	  interface	  on	  MUTANT	

ORIGINAL CENTRUM information is based on a 96 bit frame 

D<48> D<95> 

48 bit time stamp 32 bit event number 16 bit check sum 
D<47> D<16> D<15> D<0> 

D<0> 

D<1> 

D<2> 

D<3> 

D<92> 

D<93> 

D<94> 

D<95> 

ACK 

RTAG 

D_IN<0> 

CLK 

D_IN<1> 

D_IN<2> 
D_IN<3> 

MUTANT/CENTRUM 
Internal logic 

Details  of CENTRUM interface on MUTANT  front panel 

Logic block diagram(RTL view) 
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8	  bit	  spill	  
number	

12	  bit	  event	  
number	unused	  (=0)	 unused	  (=0)	 16	  bit	  check	  sum	

J-‐PARC	  event	  tag	  a^er	  converXng	  to	  the	  CERNTRUM	  structure	
D<95>	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  D<48>	  D<47>	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  D<16>	  D<15>	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  D<0>	  	  	  	  	



Chronograph	  for	  data	  transfer	
FPGA	  behavioral	  simulaXon	

Oscilloscope	  view	

Δ=770	  ns	

data[3:0]:	  LSB	

write	  strobe	



GET	  test	  bench	  @	  JAEA	
HypTPC	  

ZAP	  (protecXon	  diodes)	

AsAd	  
	  (4AGET	  chips,	  256ch)	

R-‐Cobo	  
(Xillinx	  ML507)	

Control	  PC	

Pedestal	  (RMS:	  2.2ch/12bit)	



Summary	
•  We	  designed	  and	  developed	  a	  GEM-‐TPC	  with	  the	  
gaXng	  grid	  (HypTPC)	  for	  J-‐APRC	  E42/E45	  
–  1	  MHz	  K-‐	  beam	  is	  directly	  injected	  into	  the	  TPC.	  

•  The	  GET	  system	  	  is	  adopted	  for	  HypTPC	  readout.	  
–  CH	  mapping	  for	  moderate	  hit	  mulXplicity	  	  	  	  <-‐	  done	  
–  Fast	  clear	  funcXon	  	  	  	  	  	  	  <-‐	  	  done	  
–  J-‐PARC	  Event	  Tag	  Receiving	  	  	  	  	  <-‐	  	  done	  
–  Frontend	  so^ware	  	  	  	  <-‐	  under	  development	  

•  TPC	  test	  with	  full	  GET	  system	  
–  July,	  2015	  -‐	


