高ビーム強度環境下でのゲルマニウム検出器の波形 読み出し回路の開発

東北大学 大学院理学研究科 小池 武志

共同研究者

東北大学: 佐々木昭雄, 杉原謙光, 山本康嵩, 市毛夏実, 田村裕和, 鵜養美冬, 山本剛史, Hyperball collaboration 原研: 細見健二

Argonne Natl. Lab. (ANL): M. Carpenter and P. Wilt 大阪大RCNP: CAGRA collaboration

内容

・まとめ

Hyperball-J Ge 検出器アレイ

Weight : 18.5 kg

ハイパー核γ線分光実験用Ge検出器

Hyperball用Ge検出器と現行のアナログ回路

高いエネルギー付与率

- ▶トランジスタリセット型前置増 幅器
- ▶ 低い利得: 20mV/MeV
- > リセットのエネルギー閾値: 150MeV
- ≻ゲート積分型 Ultra High Rate Shap. Amp. (ORTEC 973U)

Trough Put Ratio (TPR): T44 at K1.1BR

ビームタイム: 6/26 -7/2, 2012 標的: ¹⁰B14.2g/cm² ビームレート: 200kHz ~ 2MHz 2台の検出器 (Ge, PWO, LSO)

テストパルスを用いたTPRの測定

2種類のトリガー

Clock: 10kHz NIM signal BEAM: TOF1⊗ BPC (pre-scaled to 4kHz) TPR =

S(low,high)

of test signal acpt. by DAQ

A. Sasaki, Master thesis (2013)

Hyperball-Jのデジタル回路システム

デジタル化への2つのアプローチ

Digital Hyperball (DHB)

GRETINA digitizer (LBNL)

- 10 ch. (差動入力)
- 14 bit, 100 MHz
- ±1V dynamic range(線形 性領域)
- FPGA (Firmware)
 - 個別にパイプライン化されたメ モリバッファー
 - エネルギー (台形フィルター)
 - タイミング
 - Leading Edge
 - Constant Fraction Disc.
 - Pile-up 検知
 - 波形 (最大. 10μs)

- ▶ 次世代トラッキングGeアレイ GRETINA 用にLBNLが開発。
- ➢ Firmware は Gammasphere Geア レイ用に ANL が開発。(digital GS initiative)

試作インターフェース回路

山本康嵩(修士2年)氏 修士研究

リセット回路

- 分解能の改善
 プリント基板で製作
- リセット信号の処理

- このシステムの磁気スペクトロメーターDAQ
 へのへの組み込み
 - タイムスタンプを用いてのイベントビルド
- Ge検出器以外のHBJ検出器のデジタル読み 出し(BGO,LSO)

まとめ

- J-PARCでのハイパー核 γ 線分光実験用のGe検出器の特徴・特異性
 - トランジスタリセット型
 - 低ゲイン
 - 冷凍機冷却
- 現行のアナログシステムのスループットを測定(J-PARC T44)
 - E13実験は現行のアナログ回路でも80%以上のスループット比
 - ビーム強度10MHzで[~]5%のスループット
- デジタル回路での読み出しで不感時間の短縮を目指す
 - ANLデジタル回路システムを採用
 - Geプリンアプ出力とデジタイザーを結ぶインターフェース回路を開発中