

信号処理の高機能化を目指して ~ デジタイザーの現状とトレンド~

東京工業大学大学院理工学研究科 松澤・岡田研究室 宮原 正也

発表内容

Pursuing Excellence

- 1. ADCの基本構成
- 2. ADCの技術・性能トレンド
- 3. ADC開発事例とその応用
- 4. TDC開発事例とその応用
- 5. まとめ

ADCとは?

2

分解能とSNRの関係

量子化は必ず量子化ノイズを伴い、ADCの分解能に応じて 得られるSNRの上限値が決まる。

3

Pursuina Excellence

ΓΠΚ

2014/11/21

性能指標 Figure of Merit (FoM)

異なる分解能、変換速度を持つADCに対して電力効率を比較するための 性能指標。1変換・ステップ当たりに要するエネルギー。

ΤΟΚ

Pursuing Excellence

FoMが低いものほど電力効率が優れている。

$$FoM = \frac{Power}{2^{ENOB} \cdot \operatorname{Min}(F_S, 2 \times ERBW)} \quad (J/\operatorname{conv. step})$$

ERBW(Effective Resolution Bandwidth)は有効な信号帯域を表す。

2014/11/21

ADC 主要な変換アーキテクチャ

5

ADCの性能と用途

2014/11/21

Masaya MIYAHARA, Tokyo Tech

6

DIFECH PursuingExcellence

ΤΟΚΥΟ

ADCの性能と用途

Conversion Frequency (MHz)

2014/11/21

Masaya MIYAHARA, Tokyo Tech

ΓΟΚΥ

Π

TECH

ADCの性能動向 Fs vs. SNDR

8

TECH

ΓΟΚ

& Okada Lab.

2014/11/21

ADCの性能動向 **Fs vs. Power**

Pursuing Excellence SAR ADCの消費電力はSampling rateにほぼ比例する。 低速サンプリング用途では圧倒的な低消費電力動作が望める。 高SNRが必要な場合はΔΣ型も有意であるが、消費電力は大きい。

ΓΟΚΥΟ

& Okada Lab.

te <u>s possua</u>

TECH

B. Murmann, "ADC Performance Survey 1997-2014," [Online]. Available: http://web.stanford.edu/~mormann/adcsurvey.html. Matsuzawa 2014/11/21

ADCの性能動向 Fs vs. FoMw

Pursuing Excellence

& Okada Lab.

ΤΟΚ

1()

オペアンプを必要とするパイプライン型、ΔΣ型は電力効率が悪くなりがち。 Flash型は比較器ベースであるが構造上電力効率は悪い。

2014/11/21

インターリーブ動作含めた性能領域

Pursuing Excellence

報告されているSampling rateのWorld recordは90GS/s(SAR ADC x 64)。 SNDRのWorld recordは120dB。ただし低速。

TDCの性能トレンド

13

& Okada Lab.

当研究室で開発済みのADC

ΓΟΚ

Pursuing Excellence

& Okada Lab.

Fsample [Hz]

2014/11/21

Time-Based Folding ADCの開発

・ダイナミックアンプを用いて電圧を時間差信号に変換
 ・時間差信号をロジックセルを用いて折り返し信号を実現

15

& Okada Lab.

Pursuing Excellence

ΓΟΚ

・ミスマッチは抵抗アベレージング技術により緩和

Folding Flash ADC性能比較

2GS/s以上のFlash型ADCとして最も高いSNDR =37.4dBを達成 キャリブレーション回路なし動作可能。

	ISSCC 2008 [3]	VLSI 2012 [8]	VLSI 2013 [9]	This work
Technology	90nm	40nm	32nm SOI	40nm LP
Resolution [bit]	5	6	6	7
Power Supply [V]	1	1.1	0.85	1.1
Sampling Frequency [GS/s]	1.75	3	5	2.2
Power Consumption [mW]	2.2	11	8.5	27.4
SNDR @Nyquist [dB]	27.6	33.1	30.9	37.4
FoMw [fJ/convstep]	64.5	99.3	59.4	210
FoMs [dB]	143.5	144.4	145.6	143.3
Core area [mm ²]	0.0165	0.021	0.02	0.052
Calibration	Off chip	Foreground	Off chip	No need

ΓΠΚ

2014/11/21

Flash ADC 計測器応用

7bit ADCだけではDynamic Rangeが足りない場合は VGAを設けてDRを向上させる

ΓΠΚ

Okada Lab.

SAR ADCの性能

•	12bit,	70MS/s
---	--------	--------

- 2.2mW @ 50MS/s
- SNDR =64dB, Input DR > 80dB
- Power Scalable

	This work			[3]	[4]
Resolution (bit)	12			12	12
V _{DD} (V)	0.8	1	1.2	1.2	1.2
fsample (MHz)	30	50	70	45	50
Pd (mW)	0.8	2.2	4.6	3	4.2
SNDR (dB)	62	64	65	67	71
FoM (fJ) Nyq/DC	81/28	62/33	100/45	36/31	36/29
Technology (nm)	65			130	90
Occupied area(mm ²)	0.03		0.06	0.1	

[3] W. Liu, P. Huang, Y. Chiu, ISSCC, pp. 380-381, Feb. 2010.
[4] T. Morie, et al., ISSCC, pp.272-273, Feb. 2013.

19

ΤΟΚ

Π

Pursuing Excellence

2014/11/21

SAR ADC技術 QPIXへの応用

Floor-plan

Pixel schematic

Chip micrograph

Chip

Pa

各ピクセルにSAR ADCを配置 ✓ 低消費電力 ✓ 高精度 ✓ 小面積

多チャンネル測定に最適

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

TDCの開発

2014/11/21

Time-to-charge conversion → high resolution

- Example: $t_{res} = CV_{lsb}/I = 1pF \cdot 1mV/1mA = 1ps$

 SAR-ADC → low power, compact, sufficient range, and moderate speed
 Z.Xu, et al., SSDM 2014

Measured TDC Core Performance

22

Pursuing Excellence

50MS/s, Sub-pico secondの時間計測が可能

Power consumption: 2.9 mW@50MHz

Area: 0.018mm² (CMOS 65nm)

ΓΠΚ

& Okada Lab.

Single-shot precision: 0.64 ps(RMS)

2014/11/21

まとめ

- ADC, TDCの性能トレンド
 - SAR ADCが広い性能範囲をカバー
 - ・その他の変換方式(Flash, Pipeline, ΔΣ)はSAR ADCがカバーできない隙間を埋める
 - インターリーブ動作により90GS/sを実現
 - TDCはサブpico秒の計測が容易に
- ・ADCの開発事例とその応用
 - -7bit 2.2GS/s Time-based Folding ADC
 - -12bit 70MS/s SAR ADC
 - -0.8ps 50MS/s TDC

Back Up Slides

24 TOKYOTIECH PursuingExcellence

& Okada Lab.

Masaya MIYAHARA, Tokyo Tech

<u>: 111111 :</u>

電圧一時間差変換器

27

Pursuing Excellence

ΓΠΚ

- 入力信号に応じた時間差を持つパルス信号を生成
- ・ポジティブフィードバックにより変換利得を4倍程度向上

遅延時間折り返し波形の作り方 28 時間領域ではORやANDのロジックで折り返し波形が生成可能ingExcellence t_{dp2} t_{dp4} 遅い t_{dp1} t_{dp5} t_{dp7} t_{dp8} t_{dp10} t_{dp0} t_{dp3} t_{dp6} t_{dp9} t_d / 立ち上がりの 遅延情報に関して 速い者勝ち OR Vin 遅い者勝ち AND 速い t_{dn0} t_{dn1} t_{dn2} t_{dn3} t_{dn4} t_{dn5} t_{dn6} t_{dn7} t_{dn8} t_{dn9} t_{dn10} $t_{dn0} \cap t_{dp2}$ $t_{dn4} \cap t_{dp6}$ $t_{dn6} \cap t_{dp10}$ td

折り返し波形と遅延時間比較

遅延時間の組み合わせを変えて4つの折り返し信号を生成する。 Fine Latchはこれらの信号を位相補間しながら比較する。

29

ΓΠΚ

