# g-2/EDM実験用シリコンストリップ 検出器の読み出しシステム開発

調翔平<sup>A,B</sup>, 池田博一<sup>B,C</sup>, 池野正弘<sup>B,D</sup>, 上野一樹<sup>B,D</sup>, 内田智久<sup>B,D</sup>, 川越清以<sup>A</sup>, 古浦新司<sup>A,B</sup>, 高力孝<sup>B,D</sup>,齊藤直人<sup>D</sup>, 佐々木修<sup>B,D</sup>, 田中真伸<sup>B,D</sup>, 東城順治<sup>A,B</sup>, 長澤翼<sup>A</sup>, 西村昇一郎<sup>E</sup>, 三部勉<sup>B,D</sup>, 吉岡瑞樹<sup>F</sup>, 他 J-PARC muon *g*-2/EDMコラボレーション

九大理<sup>A</sup>, Open-It<sup>B</sup>, JAXA<sup>C</sup>, KEK素核研<sup>D</sup>, 東大理<sup>E</sup>, 九大RCAPP<sup>F</sup>

2014年 11月 21日

計測システム研究会@J-PARC

## J-PARC muon g-2/EDM 実験

#### ミューオンを用いた新物理探索実験

g-2: 0.1 ppm(先行実験 BNL E821の精度 0.54 ppm)の精度での測定を目指す EDM: 10<sup>-21</sup> e・cm(現在の下限 1.8 x 10<sup>-19</sup> e・cm)の感度での測定を目指す



# J-PARC muon g-2/EDM 実験

#### ミューオンを用いた新物理探索実験

g-2: 0.1 ppm(先行実験 BNL E821の精度 0.54 ppm)の感度での測定を目指す EDM: 10<sup>-21</sup> e・cm(現在の下限 1.8 x 10<sup>-19</sup> e・cm)の精度での測定を目指す



## シリコンストリップ検出器

400 mm

ー様磁場中を周回するミューオンの崩壊電子の飛跡・ 時間測定

- 貯蔵リング内側に検出器
- 高磁場 3T
- 高イベントレート (最大 1.2 MHz/strip)
- 大きなレート変化 (1.2 MHz/strip -> 12 kHz/strip)
- 多数のヒット点から陽電子飛跡を再構成する必要

陽電子飛跡検出器概念図 検出器モジュール(1 vane)

シリコンストリップ

576 mm センサー

ミューオン朝道 学程 333 mm

2014年 11月 21日





LO

Hit rate: 1.2 MHz / strip

フロントエンドASIC

Requirements



- 2011 16ch prototype (SlitA) design
- 2012 16ch prototype evaluation
  64ch prototype (SlitA2013) design
- **2013** 64ch prototype evaluation
- 2014 128ch (analog + digital) design
- 2015 mass production

\*SlitA, SlitA2013はアナログパートのASIC





SlitA

Evaluation Board for SlitA

### 16ch prototype Process : UMC 0.25 μm



3 fC入力時のアナログ出力の様子

## **SlitA**評価まとめ

| Parameter     | Requirement  | Measurement |
|---------------|--------------|-------------|
| Gain          | > 19 mV / fC | 40 mV / fC  |
| ENC           | < 1600 e     | 1500 e      |
| S/N           | 15           | 15          |
| Dynamic Range | > 5 MIP      | > 5 MIP     |
| Pulse Width   | < 100 ns     | 130 ns      |
| Time Walk     | << 5 ns      | -           |
| # of channels | 128          | 16          |

2014年 11月 21日 計測システム研究会@J-PARC • 次期バージョンでパルス幅の改善が必要

• タイムウォークは次期バージョンで測定



- 2011 16ch proto type (SlitA) design
- 2012 16ch prototype evaluation
  64ch proto type (SlitA2013) design
- 2013 64ch proto type evaluation
- 2014 128ch (analog + digital) design
- 2015 mass production

## **SlitA2013**

#### 5 mm x 5 mm

#### 100 mm x 100 mm



64ch proto type Process : UMC 0.25 μm -> SilterraCMOS0.18 μm analog pulse when input 3.6 fC charge



計測システム研究会@J-PARC

ゲイン、ダイナミックレンジ



- gain: 24 ~ 32 mV/fC, 平均 26 mV/fC (要求值 > 19 mV/fC)
- ダイナミックレンジ > 5 MIP (要求値 > 5 MIP)

### **ENC**

ENC = σ [mV] / A [mV/fC] / e [fC] σ:ベースラインのふらつき、A: ゲイン、e:素電荷



• 入力なしの状態でベースラインのふらつきを測定

- ENC : 890 e @ 16 pF (A sensor), 1100 e @ 23 pF (R sensor)
- ・ すべての ch で A sensor, R sensor ともに要求を満たしている





1MIP (3.6 fC) 入力時のデジタル出力

入力電荷を変えたときのパルス幅の変化

- ・ スレッショルドはノイズの5σに設定
- ・ パルス幅 ~ 80 ns @ 1 MIP (3.6 fC)

タイムウォーク



- 5 ns のタイムスタンプを目標としているためこの差が << 5 ns である必要がある
- 0.5 MIP (1.8 fC) 入力時と3 MIP (10.8 fC) 入力時でのタイムウォーク ~ 12ns
  -> 要改善 (ゲインを上げる)





### ビーム試験@東北大学



- 2014/09/26 30に東北大学でビーム試験を実施
  - DC 陽電子ビーム (200 MeV/c)
  - 目的
    - トラッキングのデモンストレーション
    - 陽電子の信号の波高を測定



## ビームテストセットアップ



- e<sup>+</sup> beam (200 MeV)
- trigger :  $FS \cap BS$

### ノイズ



計測システム研究会@J-PARC

## 信号



計測システム研究会@J-PARC

# SlitA2013評価まとめ

| Parameter     | Requirement  | Measurement |
|---------------|--------------|-------------|
| Gain          | > 19 mV / fC | 26 mV / fC  |
| ENC           | < 1600 e     | < 1600 e    |
| S/N           | 15           | ~ 20        |
| Dynamic Range | > 5 MIP      | > 5 MIP     |
| Pulse Width   | < 100 ns     | 80 ns       |
| Time Walk     | < 5 ns       | ~ 10 ns     |
| # of channels | 128          | 64          |

2014年 11月 21日 計測システム研究会@J-PARC タイムウォークのみ改善の必要あり

### 開発状況

- 2011 16ch proto type (SlitA) design
- 2012 16ch prototype evaluation 64ch proto type (SlitA2013) design
- 2013 64ch proto type evaluation
- 2014 128ch (analog + digital) design
- 2015 mass production



- 128ch プロトタイプ
- アナログ(SlitA2014) + デジタル(GM2DV2)混載回路
- Process : silterraCMOS0.18 μm

### SlitA2014

SlitA2013からの主な変更点

- Preamp and shaper
  - タイムウォーク改善のためゲインが大きくなるように変更
- Digital control part
  - register (アナログ部とデジタル部で信号のやり取り)
  - DAC: 4 bit -> 6 bit (スレッショルドのより精密な調整)

## GM2DV2



2014年 11月 21日 計測システム研究会@J-PARC 24

ゲイン・ダイナミックレンジ



• gain: ~ 80 mV/fC (前バージョンは 26 mV/fC)

• Dynamic range : < 3.8 MIP (13.8 fC)







計測システム研究会@J-PARC

-> ノイズによるタイムジッターの減少も期待できる 🛠





- pulse width: < 100ns @ ~ 5 MIP</li>
- 44 ns @ 1MIP (3.6 fC)

## タイムウォーク





time walk : 5.5 ns (0.5 MIP - 3 MIP)

プリアンプ、シェーパ電流などの調整を行うことに より、さらに改善が見込める (現在はまだ最適化していない)

## **SlitA2014**

| Parameter     | Requirement  | Simulation |
|---------------|--------------|------------|
| Gain          | > 19 mV / fC | 80 mV / fC |
| ENC           | < 1600 e     | < 1600 e   |
| S/N           | 15           | ~ 25       |
| Dynamic Range | > 5 MIP      | 3.8 MIP    |
| Pulse Width   | < 100 ns     | 40 ns      |
| Time Walk     | < 5 ns       | 5.5 ns     |
| # of channels | 128          | 128        |

タイムウォークは前バージョンから改善された(さらに改善も見込める)

2014年 11月 21日 計測システム研究会@J-PARC ゲインを大きくするとダイナミックレンジが小さくなる 要求値以下だが問題になる値ではない



- J-PARC muon g-2/EDM 実験のシリコンストリップ検出器用ASIC の開発を行っている
- ・ これまで2つのプロトタイプを作成し、評価を行った
- ・ 現在は次期バージョンのデザインを行っている
- 次期バージョンではゲインを上げることによりタイムウォークの改善が見込まれる
- ・ 次期バージョンではアナログ・デジタルの混載回路になっている



- 2014年度末に次期バージョン完成
- · 2015年度~評価開始



# **BACK UP SLIDES**



## シリコンストリップセンサー

#### 軸方向(A)センサー

- 厚さ: 0.32 mm
- ストリップピッチ : 0.100 mm
- ストリップ幅 : 0.027 mm
- ストリップ長さ: 72 mm
- ストリップ数 : 64 本
- 検出器容量 : 16 pF

#### 動径方向(R)センサー

- 厚さ: 0.32 mm
- ストリップピッチ : 0.188 mm
- ストリップ幅 : 0.050 mm
- ストリップ長さ: 102 mm
- ストリップ数 : 64 本
- 検出器容量: 23 pF

2014年 11月 21日

#### 片面 p-on-n 型センサー



## **J-PARC BEAM TEST**

- Muon stoped Target Sci. and decay positron was measured.
- Maximum hit rate was estimated to be more than 1.2 MHz/strip. cooling by the chiller



計測システム研究会@J-PARC



- Trigger : the pulse synchronized with beam (25 Hz)
- Wave Form Digitizer (CAEN V1742)
  - analog output of SlitA 2013
  - DSSD, Target Sci., Front Sci., and Back Sci. signal
- TDC (CAEN V1190, V1290)
  - digital output of SlitA2013
  - timing of Target Sci., Front Sci., Back Sci.



A sensor noise









# **Digital Control**

| Signal name | Direction | Description |
|-------------|-----------|-------------|
| SCLK        | D -> A    | Clock       |
| SI          | D -> A    | Write Data  |
| SSn         | D -> A    | Chip Select |
| SO          | A -> D    | Read Data   |

CLOCK : 1 Hz ~ 500 kHz IO standard : LVCMOS09 8 bits register x 2 (use 11 bits)







When SSn = H, SI is undefined.





Read out data should be changed at leading edge.

## **Bit Control**

#### first register

|    | Control Bit | Description             |
|----|-------------|-------------------------|
| W0 | TEST        | Test Pulse in           |
| W1 | MON         | Analog monitor          |
| W2 | COMPENB     | Comparator enable       |
| W3 | GBOFF       | Gain boost off          |
| W4 | POS         | POS terminal of RF4P    |
| W5 | D0          | DAC LSB                 |
| W6 | D1          | DAC 2 <sup>nd</sup> bit |
| W7 | D2          | DAC 3 <sup>rd</sup> bit |

#### second register

|     | Control Bit | Description             |
|-----|-------------|-------------------------|
| W8  | D3          | DAC 4 <sup>th</sup> bit |
| W9  | D4          | DAC 5 <sup>th</sup> bit |
| W10 | D5          | DAC MSB                 |
| W11 |             | NC                      |
| W12 |             | NC                      |
| W13 |             | NC                      |
| W14 |             | NC                      |
| W15 |             | NC                      |

