ATLAS muon trigger upgrade electronics

戸本 誠 名古屋大学

LHC-ATLAS実験

- √s = 7TeV(2011), 8TeV(2012) : ∫Ldt ~25fb⁻¹
 - → ヒッグス粒子の発見
- √s = 13TeV ~ 14TeVで再開、より高いルミノシティーを目指す。
 - → さらなる新物理(SUSY, Extra Dimensionなど)の直接的発見
 - → 多量のヒッグス粒子,標準模型粒子の精密測定による新物理発見

LHC-ATLAS upgrade

ATLAS検出器アップグレード:

① 内部飛跡検出器とフォワード部検出器の総取り替え 多量のpileup環境下(~100)での優れた飛跡検出能力 より優れた放射線耐性

②トリガーとデータ収集系の改良 高い衝突頻度に耐えうるより優れた事象選別能力

Trigger Upgrade for HL-LHC

改良のない場合のtrigger性能

Trigger	Estimated L1 Rate
EM_20 GeV	200 kHz
MU_20 GeV	$> 40 \mathrm{kHz}$
TAU_50 GeV	50 kHz
di-lepton	100 kHz
JET + MET	$\sim 100 \mathrm{kHz}$
Total	500 kHz

Pipelineの充実化 → Trigger rateやlatencyに余裕 L0 Trigger : latency=6µs, rate=1MHz L1 Trigger : latency=30µs, rate=300~400kHz

Trigger algorithmの強化

低いTrigger thresholdを保ちつつ、Trigger rateを下げたい

ATLAS Muon Trigger (現在)

飛跡精密測定: MDT, CSC トリガー発行: TGC, RPC

Coincidence型のトリガー

ATLAS Muon Trigger (Upgrade後)

飛跡精密測定: MDT, Inner muon chambers

トリガー発行: TGC, RPC, MDT, Inner muon chambers

Fast Tracking型のトリガー

Muon Trigger upgrade 性能

ATLAS Run 1のデータを用いたupgrade trigger の性能評価

Proposed Muon Trigger scheme

日本グループの取り組み

- 1. TGC Trigger electronicsの総取り替え
 - Variable delay & BCID回路
 - Fast Tracking型トリガーロジック回路
- 2. 新しくMDT Triggerを開発
 - ドリフト時間測定用TDC回路
 - Fast Tracking型トリガーロジック回路

日本グループの取り組み

- 1. TGC Trigger electronicsの総取り替え
 - Variable delay & BCID回路
 - Fast Tracking型トリガーロジック回路
- 2. 新しくMDT Triggerを開発
 - ドリフト時間測定用TDC回路
 - Fast Tracking型トリガーロジック回路

Variable Delay & BCID回路

チャンネルによって異なる 信号ケーブル長 →最大で25ns程度

40MHzのBunch Crossing内に信号のタイミングを揃える →0.9ns刻みのVariable Delay (32段階の調整)

同等の回路がHL-LHC実験でも必要 → PLLの基本を追求 UMC0.25µmによる開発 ⁶⁰Co照射試験による放射線耐性試験

12 PLLを用いたTDC回路 OpenIt 「ASIC TDC」 堀井泰之、臼井主紀、小野木宏太、佐野祐太、佐々木修、田中真伸、田内一弥 戸本誠、 TSMC社 0.18µm (VDD=1.8V)プロセスを最適化 <u>シンプルなPLL回路</u>によるO(10)ps時間分解能のTDC 多チャンネル化、キャリブレーションが容易:汎用性に優れたTDCを目指す 刻み幅=T₀/(n×N) 時間情報 ラッチ 信号 インバータ部 DQ DQ DQ DQ DQ Wp=8 μ m, Wn=4 μ m Lp=Ln=180nm 発振周期 発振回路 T_0/n 1/n VCO部 Vcon 電圧制御 分周器 Wn=40 μ n, Ln=240nm チャージ ローパス

フィルタ

インバータ対当たり60psの遅延 TDCの刻み幅になる

N=33, n=32 → 基準クロック15MHz位

down

ポンプ

位相比較回路

基準クロック

(周期T₀)

PLL-TDC レイアウト

業者 (シリコンアーティストテクノロジー)によるレイアウト チップ内にPLL回路とTDC回路(PLL回路含む)

14 レイアウト上の注意 インバータ In a model of the set and the second second - annotation 101120102010 2 - 31 CHARLEN a monored AT MARKATAN (M) PARAMAN THE OWNER OF THE TATATA "I MANAGE TATATA

高分解能:インバーター間距離をできるだけ短く

線形性 :等長配線

減衰対策:出力をすぐにドライブ

シミュレーション結果

ASICテストボード

初段ラッチクロック PLL出力

PLL部の評価(1)

- 入力Vconに応じて、適切にPLL回路が発振
- 発振周期350MHzから頭打ち
 - → Vconが0.75Vより高くならない

PLL部の評価(3)

基準クロックとあるPLL出力との差

TDC部の評価

信号をラッチした後に、33bitのデータ保持用DFFが2段 →2段のDFF後の出力が出てない Fanoutに失敗か? →リニアリティーの測定は難しい

分解能の測定などを進めている

PLL-TDC回路の今後の展望

差動PLL回路でTDCを構成

- 刻み幅=インバータペア数ではなく、インバータ数
- 電流のスイッチングがなく、より速い動作が期待できる
- 偶数個のインバータで構成可能 → 8/16/32…bit構成
- ノイズに強い
- レイアウトは難しい?

理想的シミュレーションでは期待できそう!

MDT-TDC回路の開発

開発状況

OpenIt 「アトラス実験MDT µ粒子検出器トリガー用TDC」 ^{戸本誠、堀井泰之、佐野祐太、佐々木修、内田智久、池野正弘}

PT7-汎用VMEマザーボード(坂本氏他)に2種類のTDC回路

$\mathsf{NIMin} {\rightarrow} \mathsf{FPGA} {\rightarrow} \mathsf{GTX}$

 $\begin{array}{l} Mezzanine \rightarrow FPGA \rightarrow GTX \\ \text{8ch NIMin(?)} \end{array}$

23

将来的には、放射線耐性のある FPGA (Microsemi? Flash-based)搭載のモジュールを検討

まとめ

HL-LHC実験用のµ粒子トリガー回路の開発を行っている

- TGC用Variable Delay回路
 - → O(10)psの分解能の汎用的PLL-TDCの開発へと展開

- MDT用TDC回路

- → Openitからの技術をHL-LHCに応用する
- → 放射線耐性に優れたFPGAによるTDC回路の開発へ
- ATLAS日本グループがµ粒子トリガーのアップグレード計画 を主導するために、OpenItなどとの連携が不可欠!

バックアップ

Inner MDT Middle MDT (BW) Outer MDT (SW)μ **Precision Detector σ< 100μm ∲**-information BCID (40 MHz) Level-1 Trigger resolution of BCID hit signal alignment incidence angle ---> BCID (40 MHz) 2 x 2/3 coin. < 1 mrad BCID, LVL1 latency BCID hit signal alignment track position and 2 x 2/3 coin. deviation encoding track position and BW-TGC + NSW : LO deviation encoding track fitting BW-MDT + SW : L1 track position (R, ϕ) Track Fitting $d\theta$: deviation of TGC BW-Endcap: crossing incidence angle from hit information (R, ϕ) , d θ angle infinite pT muons pT calculation Coarse d0 -cut

Proposed Muon Trigger scheme

