

ダークマター / ニュートリノ検出

におけるTPCの読み出し技術

神戸大 東野 聡

身内 賢太朗	岸下 徹一	李沢 祥太
石浦 宏尚	坂下 健	成田 晋也
島田 拓弥	庄子 正剛	根岸 健太郎
窪田 諒	田中真伸	岩手大
神戸大	長谷川 拓哉	

KEK

Open-it 計測システム研究会 @J-PARC 2020/11/26-27

2020/11/27

イントロダクション

ダークマター検出: NEWAGEの事情 (1)

- •神岡にて反跳原子核の3次元飛跡検出
- ガスTPC + 400 µm 間隔ストリップ検出器
 - ▶ 計768 ch × 2 (2次元) 読み出し
- 測れるのは各ヒットの相対時間
 - ►ドリフト方向の絶対座標はわからない

ダークマター検出: NEWAGEの事情 (1)

- •神岡にて反跳原子核の3次元飛跡検出
- ガスTPC + 400 µm 間隔ストリップ検出器
 - > 計768 ch × 2 (2次元) 読み出し
- 測れるのは各ヒットの相対時間
 - ►ドリフト方向の絶対座標はわからない

ニュートリノ検出: LAr TPCの事情

- ニュートリノ長基線加速器を使った実験
 - ➡検出原理はだいたいNEWAGEと同じ
- 液体アルゴン: 沸点 -185 °C
 - ➡低電力、低温環境での動作
- ダイナミックレンジもほしい

DAQシステムに必要な性能

- ダイナミックレンジが大きい
- •時定数が大きい(遅いパルス)
 - ➡陰イオンの質量のせいでドリフトが遅い
- 低ノイズ
- 低温動作、低消費電力
- 多チャンネル読み出し
- 波形サンプリング
- 外部&セルフトリガー機能

デジタル側の お仕事

DAQシステムに必要な性能

- ダイナミックレンジが大きい
- •時定数が大きい(遅いパルス)
 - ➡陰イオンの質量のせいでドリフトが遅い
- ・低ノイズ
- 低温動作、低消費電力
- 多チャンネル読み出し
- 波形サンプリング
- 外部&セルフトリガー機能

ASICに任せる

LTARS2018 (Open-it 開発)

• 高ゲインのアンプを16チャンネル積んだASIC

- ➡元々LAr TPC用に開発 (LTARS2014)
- ➡NEWAGEグループも参加 (LTARS2016)
- ●ダイナミックレンジを稼ぐ→2種類の回路を用意

TK回路

LTARS2018 (Open-it 開発)

• 高ゲインのアンプを16チャンネル積んだASIC

LTARS2018 (Open-it 開発)

• 高ゲインのアンプを16チャンネル積んだASIC

LTARS2018試験

TPC (µ-PIC) 32 ch

DAQシステム (簡略版)

Kobe U.

DAQシステム 写真

11

注:まだテスト段階のボードたちです

Kobe U.

Wave form (FADC)

Kobe U.

• 32 ch × 2 (high gain, low gain) のテストパルスの波形取得

Kobe U.

• Analogボード6枚 (12 chip) 用意、要請値をクリアしているか確認

ボード2セット×2、64 ch読み出し

外部トリガー: 検出器の端のイベントを別の読み出し で発行 (基本**α**線とかを見る)

Kobe U.

- ²⁵²Cf 線源を用いた測定
 - ■ふだん中性子線源として使うがα線もいっぱい出る
- ・なんか中性子っぽいのがまぐれで見えた!

本格的にダークマター探索に向けたDAQ開発を開始

本格的にダークマター探索に向けたDAQ開発を開始

以下の条件を満たすときセルフトリガー発行

- ・あるチャンネルのADC値とoffset (常時計算)の差が[TRG_THR]以上
- ・上記を満たすチャンネルが[NUM_CH]以上

ソフトウェアから指定可

(未実装)

悩ましいところ

18

- チャンネル数問題
- FPGAリソース問題
 - ➡768 ch x 2 に対して 32 ch / FPGA というコスパの悪さ
 - ➡必要リソースも多いため現状あまりチャンネル増やせず要工夫
- アナログパルス引っ張りすぎ問題
 - ➡あまりノイズは拾っていなさそうだが心配
- FPGA pin (というかOutput) につながるボードのI/O少なすぎ問題
 - ➡デバッグ困難、Vivadoのロジアナもなぜか動かない (これは東野のせい)

ちょっと古い図 実際この2倍くらい使用

こういう美しいボードを作りたい

FPGAにつきどれだけの

LTARSを積めるかが課題

将来的なプラン

モジュール型でかチェンバー作成

➡国際プロジェクトとして始動(海外からの実験屋いらっしゃいスタイル)

• それぞれの窓にエレキが干渉してはいけないのでコンパクトなDAQが必要

►というわけでボードを少なくしたい

将来的なプラン

モジュール型でかチェンバー作成

➡国際プロジェクトとして始動 (海外からの実験屋いらっしゃいスタイル)

• それぞれの窓にエレキが干渉してはいけないのでコンパクトなDAQが必要

►というわけでボードを少なくしたい

Iwate U.

DAQシステム

Iwate U.

・こちらはLTARS内にADCが実装されていて美しい

神戸大で行ったような基礎試験はこちらでも実施

→正常に動作(割愛)

ゲイン切り替え機能の動作確認^{||wate U.}

• V_{th}を与えておく

- ➡Outputの電圧に応じてフィードバック キャパシタンス切り替え
- 1000 mVの設定に対して正常に ゲインが変化
 - ➡ こちらの回路もちゃんと動いている!

- LTARS2018搭載ボード(SIRONEKO)をLAr中に入れる
- FPGAは不安なので取り外し
- •LTARSからの出力をオシロで測定
- ・これらの結果はJINSTにも投稿
 - → T. Kishishita et al 2020 JINST 15 T09009

Iwate U.

まとめ

- 大ダイナミックレンジを備えたLTARS2018を用いた
 DAQシステム開発中
 - ➡陰イオンガスTPCを用いたダークマター探索実験
 - ➡LAr TPCを用いたニュートリノ検出実験
- •2種類の回路を持つチップはそれぞれ正常動作
- (Kobe U.) 新たなボードの開発検討中
 - ■コンパクトなDAQシステムを目指す

LTARS2018試験 (single chip) Kobe U.

LTARS2018_K06Aの要請と測定結果

●要請値と1Chip boardでの測定結果
中村拓馬修士論文2020年2月神戸大学

	High Gain		Low Gain	
	要請値	測定値	要請値	測定値
ENC	4000(0.6fC)	3781(0.6fC)	1.3×10 ⁵ (20fC)	5719(20fC)
ダイナミックレンジ	-80fC~80fC	-120fC~120fC	-1600fC~1600fC	-1700fC~1500fC
Gain	10.0mV/fC	10.2mV/fC	0.50mV/fC	0.49mV/fC
時定数	4~7µs(slow)	6.9µs(slow)	4~7µs(slow)	6.6µs(slow)

●LTARSの要請値を十分に満たしている。

6

1Chip Board BOLT基盤

2020/9/17

粒子物理研究室 窪田諒

ゲイン、ダイナミックレンジ

Gain, Dynamic Range共に両極性で要請値をクリア