KOTO実験におけるDAQシステム

公志 (KEK) 2020/11/26 計測システム研究会@J-PARC 塩見

- Standard Model : FCNC
 - CP-violating:

$$K_L \propto K^0 - \overline{K^0}$$
$$\mathscr{A}_{K_L \to \pi^0 \nu \nu} \propto \mathscr{A}_{s \to d} -$$

- Rare:
 - $BR(SM) = 3 \times 10^{-11}$
- Accurate:
 - theoretical uncertainty < 2%
- Good probe for New Physics search

Physics on $K_{I} \to \pi^{0} \nu \overline{\nu}$

$$\propto \left| V_{ts} V_{td}^* \right|^2$$

Experimental search for $K_L \rightarrow \pi^0 \nu \nu$

Search for $K_L o \pi^0
u ar{
u}$ and $K_L o \pi^0 X^0$ Decays at the J-PARC

J. K. Ahn et al. (KOTO Collaboration) Phys. Rev. Lett. 122, 021802 - Published 15 January 2019

<u>Direct limit (KOTO 2015)</u> $B_{K_L \to \pi^0 \nu \overline{\nu}} < 3.0 \times 10^{-9} (90 \% \text{ CL})$

Experimental principle

$K_L \rightarrow \pi^0 \nu \nu$ decay

" $2\gamma + Nothing + Pt$ "

Assuming 2γ from π^{0} , Calculate z vertex.

8

5

6

2

Csl~3000CH. 他~1000CH. 合計~4000CH

10 12 14 16 [**m**]

1.1e7K∟ @beam exit(/spill) @50kW 5%くらいが 崩壊領域内で崩壊する

KOTO Trigger strategy $(2\gamma \text{ in Csl + Nothing})$

$K_L \rightarrow \pi^0 \nu \nu \nu$ decay

- Cslに大きなエネルギー損失(Et): 430K/spill
- Veto検出器にHitがない(Veto) : 14K/spill
- Cslに2クラスター(Clustering) : 2K/spill

 $K_{L} \rightarrow \pi e \nu (\pi \mu \nu)$

KOTO DAQ 概略図 (Trigger生成部)

KOTO DAQ 概略図 (読み出し部)

\sim 16K events KEK-CCへ転送 (4Gbps)

KOTO FADCs

- 16ch 14bit 125MHz FADCs
 - w/ Gaussian filter

- 4ch 12bit 500MHz FADCs
 - w/o filter
 - ・主にBeam中に置かれた検出器に使用

125MHz FADC

L2 読み出し tical Link Et,Veto Clock,Trigger Clustering,Error 信号入力部 信号入力部

KOTO FADCs Pipeline読み出し

Et/Veto

- 8ns毎に計算
 - Et= Σ (Energy)

- Veto=OR(Energy>閾値)
- Local CDT
 - Crate内の各FADCから の情報をまとめる
- Optical Fiber Center(OFC)
 - ・各Crateからの情報をまとめる

Et/Veto

注:CalorimeterのEfficiencyはデータの外挿から求めた点との比

Clustering

Clustering

- ・Et/Vetoをみたした事象に対して計算
 - 0.16µs(20 clock分)のdead time

Clustering

Trigger efficiency

Mode	Data	MC
K→2π	96.8%	96.7%
Κ→γγ	99.6%	99.2%
Κ→πνν		99.6%

DAQ performance

Trigger menuのスナップショット

Run79 (2018年6月): 51kW

Triggerの種類	Trigger条件	#Tri
$KL \rightarrow \pi \nu \nu$ Trigger	Et+Veto+2 cluster	2
Normalization Trigger	Et+Veto	0
Minimumbias trigger	Et	1
4,6 cluster trigger	Et+Veto+ 4 or 6cluster	7
3 cluster trigger	Et+Veto + 3 cluster	7
Sum		1

Future plan

・Event buildingを上流で行い、PCでより細かな選別を行う。

まとめ

- ・大強度のKLビームの中からTriggerの取捨選択をすることが大事
 - ・現状は Et + Veto + Cluster countingを基にtriggerを作成し、 99%のLive timeを達成している。
- DAQの更なる改良を進めていく。

・KOTO実験はKL $\rightarrow \pi^{0} \nu \nu$ 崩壊探索を通して新物理の探索を行なっている。

今後は更なる大強度ビームへの対応、バイプロダクトデータの取得を目指して