ATLAS実験シリコンピクセル検出器 アップグレード用のデータ読出技術

計測システム研究会2020 @ J-PARC

26-27th November, 2020

Minoru Hirose (Osaka) On behalf of the ATLAS ITk Pixel group

Disclaimer

- Today's talk covers mainly the DAQ system and relating softwares for our Pixel module mass production.
- Planning to talk about three main points.
 - ➡ Database system to track module production history.
 - ➡ DAQ system to perform pixel tests.
 - Design and performance of a DAQ interface board.

LHC upgrade project

- LHC, world's largest collider, will be upgraded to HL-LHC by 2026.
 - ➡ Aiming to collect ~10 times more statistics.

ATLAS detector upgrade

• Silicon Pixel Tracker: Innermost detector of the ATLAS

ATLAS Upgraded Pixel detector

Difficulties for the QC test

- Complicated assembling procedure.
 - Need to properly handle test results to compare between different stages and/or sites.
- Many institutes (>20) are joining in the production.
 - Need to perform comparable tests with using variety of setups.

Data handling model for our QC tests

Three-database system: One central, two local.

Data handling model for our QC tests

- Three-database system: One central, two local.
- Problems to solve:
 - Slow data link between Czech and non-European sites.
 - ✓ Solved: a subset of data stored in the Local DB.
- There are some special data (e.g. extra env. monitor data) which is only relevant for a particular site.
 - ✓ Solved: introduced a flexible data format for test results.
 - Don't have enough person power to customize the system for individual sites.
 - ✓ Solved: adopted a open-source software.

Central Production Database

Local database system

- mongoDB₀: No SQL database
 - ➡ Favored due to flexibility compared to SQL DBs.
 - → Data is stored as a <u>JSON</u> format ("document").

Local database system

- mongoDB :: No SQL database
 - ➡ Favored due to flexibility compared to SQL DBs.
 - → Data is stored as a <u>JSON</u> format ("document").

Local DB viewer

- Quick look at each test result as well as associated env. data.
- Custom web application based on Flask (python).
 - Example: http://atlaspc5.kek.jp/localdb/

COMPONENTS / TEST Asia/Tokyo * Sign in * Componet: 20UPGD40000002 Current Stage: ...

Information

Component

ltem	
Serial Number	20UPGD40000002
Component Type	module
FE type	RD53A
Children	20UPGTU0004228 20UPGTU0004229 20UPGTU0004230 20UPGTU0004231

Comments

Comment	componentType	Name	Institution	Date
g	module	Hiroki Okuyama	TokyoTech	2020-08-07 07:15:15.738000

Run Number 🛛 🔶	Test Type 🔶	Stage 🔶	User 🔶	Site 🔶	Date 🔶	Score 🔶	Values 🔶
1386	std_noisescan	MODULEWIREBONDING	atlasj	atlaspc9.kek.jp	2020/08/07 17:43:39	-	
1385	std_totscan	MODULEWIREBONDING	atlasj	atlaspc9.kek.jp	2020/08/07 17:43:23	-	
1384	std_thresholdscan	MODULEWIREBONDING	atlasj	atlaspc9.kek.jp	2020/08/07 17:40:07	-	
1383	syn_tune_globalthreshold	MODULEWIREBONDING	atlasj	atlaspc9.kek.jp	2020/08/07 17:38:13	-	

Local DB viewer

- Quick look at each test result as well as environmental data.
- Custom web application based on Flask (python).
 - Example: http://atlaspc5.kek.jp/localdb/

Local DB viewer

- Quick look at each test result as well as environmental data.
- Custom web application based on Flask (python).
 - Example: http://atlaspc5.kek.jp/localdb/

mouseover : select the position scroll : change the magnification ratio

Environmental monitoring system

- (influxdb : Time series database for env. monitoring.
- Grafana : Open source analytics and interactive visualization web application.
- Aiming to reduce development and maintenance cost.
 - One can customize their own monitoring system with well maintained documentation.

DAQ system

YARR - DAQ system

- PCIe based high-speed DAQ system
 - FPGA just aggregates data from FE ASICs, everything sophisticated is done by its corresponding software.

YARR Firmware

YARR - DAQ system

- PCIe based high-speed DAQ system
 - Supporting commercial PCIe-FPGA boards with FMC. ✓ PLDA XpressK7: ~¥200k ✓ Trenz TEF1001: ~¥100k ✓ Xilinx KC705: ~¥210k ➡ Assuming less expensive
 - Kintex7 (xc7k160t, xc7k325t).

FPGA AC/DC Characteristics

- FPGA on KC705: XC7K325T, speed grade="-2".
 - 1250 Mbps is the maximum rate. (and it's less than the ASIC data output rate...)

	l/O Bank Type	Speed Grade					
Description			1.0	0.95V	0.9V	Units	
		-3	-2/-2LE	-1/-1M/-1LM/-1Q	-2LI -2LE		
SDR LVDS transmitter (using OSERDES;	HR	710	710	625	710	625	Mb/s
$DATA_WIDTH = 4 \text{ to } 8)$	HP	710	710	625	710	625	Mb/s
DDR LVDS transmitter (using OSERDES;	HR	1250	1250	950	1250	950	Mb/s
$DAIA_WIDIH = 4 \text{ to } 14)$	HP	1600	1400	1250	1400	1250	Mb/s
SDR LVDS receiver (SFI-4.1) ⁽¹⁾	HR	710	710	625	710	625	Mb/s
	HP	710	710	625	710	625	Mb/s
DDR LVDS receiver (SPI-4.2) ⁽¹⁾	HR	1250	1250	950	1250	950	Mb/s
	HP	1600	1400	1250	1400	1250	Mb/s

Table 17: Networking Applications Interface Performances

ref. DS182

Challenges

- Readout options for 1.28 Gbps data rate
 - Option.1: abuse normal pins beyond FPGA specs.
 ✓ Already gave it a shot, but unsuccessful so far.
 - ➡ Option.2: use multi-gigabit transceivers (e.g. GTX).
 - ✓ Implemented and worked, but #GTX is not enough for the module testing (12 required, max 8 available).
 - Option.3: buy or design a board with more expensive FPGA.
 ✓ Difficult in terms of budget.
- Currently adopted solution:
 - Operate ASIC with a test mode with half (640 Mbps) speed.
 - Unknown how this affects to the production yield:
- Any good idea...?

Interface board

Interface board for module testing

- Custom PCB for testing modules.
 - Submitted to a cheap Chinese company (e.g. PCBway, JLCPCB) which may sound a bad choice...
 From/to

PS and Arduino/RasPi

FPGA

Interface board for the module testing

- Quality and their skill are actually good:)
 - ➡ FMC HPC, 0.5 mm pitch pads successfully assembled.
 - → Impedance could be controlled very well.
- Low cost by a factor of ~10 compared to P-ban.

Summary

- ATLAS pixel detector will be upgraded for HL-LHC..
 - Preparing for the mass production of Pixel detector.
 In terms of not only hardware itself, but also a software infrastructure to test detectors.
- To share the tasks among the international collaboration, data handling tend to become complicated.
- Real production phase is approaching, need to wrap up soon!!

Backup

Overview of our QC test system

Complicated software infrastructure

QA/QC system

Sampling point tuning algorithm

• Based on Xilinx XAPP1017.

Figure 6: Data Sampling Delay Too Long

