

Firmware integration of Level-0 muon trigger for HL-LHC

三野裕哉 (京都大学) ATLAS 日本トリガーグループ 2021/10/28 計測システム研究会

High Luminosity LHC

- Large Hadron Collider (LHC)
 - ▶ CERN の陽子陽子衝突型円形加速器
 - ▶ 衝突頻度 40 MHz、重心系エネルギー 13 TeV
- ATLAS 実験
 - ▶ 大型汎用検出器 (ATLAS) を用いて陽子衝突事象を観測。
 - ▶ 目的:未知の粒子の探索やヒッグス粒子の精密測定
- High Luminosity LHC (HL-LHC)
 - ▶ 高い統計量での標準模型の精密測定や新物理探索を目的として 2027 年から開始予定。
 - ▶ 瞬間ルミノシティを nominal luminosity の 5 7.5 倍に増強する。

HL-LHC に向けたトリガーシステムのアップグレード

● ATLAS は初段のハードウェアと後段のソフトウェアで実装されたトリガーの 2 段階構成。

三野 裕哉

計測システム研究会

ミューオン検出器

Thin Gap Chamber (TGC)

- ▶ 多線式比例計数管(MWPC)の一種。
- ▶ エンドキャップ部でメインとなるミューオントリガー検出器。
- ▶ Big Wheel (BW) と呼ばれる円盤に3つのステーション

(全 7 層) で構成されている。

▶ ワイヤーとストリップによる R-¢ の2次元読み出しを行う。

● 磁場内部の検出器

- ▶ 1.05 < |η| < 1.3
 - TGC EI & RPC BIS78

Resistive plate chamber (RPC) は TGC と 同様に R- ϕ の2次元読み出しを行う。

- <u>Tile calorimeter</u> (ハドロンカロリメータ) El or BIS78 でカバーできない領域で用いる。
- ▶ $1.3 < |\eta| < 2.4$
 - New Small Wheel (NSW)

飛跡の精密な角度測定が可能な検出器。

HL-LHC でのミューオントリガーアルゴリズム

現行のシステムでは前段回路で TGC のヒット情報を用いてコインシデンスを取り、
 コインシデンス結果をトリガー判定回路に転送する。

▶ HL-LHC では高速データ転送技術を活用し、TGC のヒット情報を全てトリガー判定回路に転送する。

HL-LHC でのトリガーアルゴリズム

① TGC BW の全ヒット情報を用いて飛跡を再構成。

- ➡ TGC BW での検出効率は 96 % (現行のトリガーシステムと比較して +4 %)
- → 全層の情報を用いることで pr 分解能が向上する。
- ② 磁場内部の検出器で測定した位置・角度情報を用いることでトリガーレートを大幅にカット。

トリガー判定回路 (Sector Logic : SL)

 ● 事象選別を行うトリガー判定回路 ("Sector Logic", SL) には Virtex UltraScale+ FPGA (XCVU13P) を搭載予定。(Run 3 で使用する Kintex-7 の ~10 倍規模)

- XCVU13P のリソース量
 - ▶ ロジックセル: 3.8 M 個
 - ▶ RAM: 455 Mb
 - ▶ MGT (GTY): 128 個
- 1つの SL は 3 つの「トリガーセクター」から情報を受け取る。 (Endcap 2つ、Forward 1つ)
 - ▶ 左の絵の赤線領域全てをカバーする。

FPGA (XCVU13P)

XCVU13P には以下の2種類の容量のメモリが搭載されている。
 a) BRAM : 36 Kb / block

- データ幅は 1, 2, 4, 9, 18, 36 bit に設定可能。

b) UltraRAM : 4 K × 72 bit = 295 Kb / block

- データ幅は 72 bit で固定。

② XCVU13P は 4 つのダイ (Super Logic Region : SLR) を連結して構成されている。

a) SLR間の信号の送受信には制約がある。

▶ レイテンシ (O(ns))

▶ 信号線数が有限 (計23 Kb分)

b) 各SLR上には以下の制約がある。

▶ FPGA素子の量

▶ 光通信機(通信容量)

● 以上の二つの特徴 (UltraRAM, SLR) を踏まえてファームウェアのデザイン作成が必要。

🗧 🗶 XILINX.

Trigger Logic

飛跡再構成

- TGC BW のワイヤー(ストリップ)のヒット情報を全て用いて $\eta(\phi)$ 方向の飛跡を再構成。
- あらかじめ TGC のヒットに対応したミューオンの飛跡情報を持ったパターンリストを作成し、 UltraRAM に格納する。
- ① 各 station (M1, M2, M3)で TGC のヒッ トからコインシデンスをとり、位置 ID を定義。
- ② パターンリストからヒットの組み合わせ に対応する飛跡情報を抽出。
- ➡複雑な計算を必要とせず、高速な処理が 可能。

①ステーションコインシデンス				(
M1 Coincidence Hit ch: B B B \rightarrow M1 Position ID: 3		Input (Positi	on ID, 1	16 k
M2 Coincidence		3	4	4
Hit ch: $B C \rightarrow M2$ Position ID: 4		3	4	
M3 Coincidence		3	5	
Hit ch: C \rightarrow M3 Positon ID: 5				

			②开	診情報の抽出 Input
	Input (Position ID, 16 bit)		l6 bit)	Output ((Track segment, 18 bit)
	3	4	4	Position η_a , Angle $\Delta \theta_a$
→	3	4	5	Position η_b , Angle $\Delta \theta_b$
	3	5	5	Position η_c , Angle $\Delta \theta_c$

計測システム研究会

 パターンマッチングに必要な RAM 使用量を最小限にするため、検出器領域を 90 個の "ユニット"に分割する。

- URAM 1 block (295 Kb)
- UltraRAM の扱いにくい点 : 出力データ幅が 72 bit と固定。
 - ▶ 飛跡情報(18 bit) を各アドレスに 4 セット格納することで UltraRAM のリソース量を最大限に活用する。
 - ▶ 72 bit の飛跡情報を抽出した後に M1 の位置情報をもとに 対応する 18 bit を出力する。

飛跡情報を用いた pr の算出

● ミューオンはトロイド磁場の非一様性により、<u>ηとφ方向のいずれにも曲がるため</u>、 ワイヤーとストリップでそれぞれの方向の飛跡をパターンマッチングによって得る。 ▲ θ · Δ φ の 2 次元の情報から pT を返す LUT を作成し、BRAM 上に Coincidence Window (CW) として実装する。

Firmware integration

フロアプランの決定

- FPGA 内のフロアプランは RAM のリソース量、処理
 時間や GTY bank の数などを考慮して決定した。
 ▶ 飛跡再構成については TGC セクターごとに実行し、各実行ブロックを各 SLR に配置することで処理時間を低減。
 - ▶磁場内部の検出器を用いた p⊤ 判定はリソース使用 量の比較的少ない Forward 領域の飛跡再構成と同 じ SLR を使用する。

三野 裕哉

BGA Solder Ba

回路合成(ワイヤー飛跡再構成)

特にワイヤー飛跡再構成は 4,400 チャンネルの信号を扱う大規模なファームウェアとなるため、実際に回路合成を行い FPGA 全体での素子の使用率を確認した。
 *タイミング違反を避けるため、FPGA全体での使用率は ~50% が目標。

	ロジックセル	ルックアップ テーブル	レジスタ	RAM
SLR3	41% 28%		5%	46%
SLR2	18%	12%	2%	20%
SLR1	40%	28%	5%	46%

- 回路合成の結果
 - ▶ タイミング違反なし
 - ▶ 処理時間: 78 ns (< 要求 125 ns)
 - ▶ 各 SLR での素子使用率 ~40%
- ➡ 要求を満たす規模で回路を実現した。

ワイヤー飛跡再構成の性能評価(シミュレーション)

再構成された飛跡の角度(θ_{Reco})と真の
 ミューオン飛跡の角度(θ_{Truth})を比較する
 ことで性能を評価した。
 ▶ 角度分解能: 3.2 mrad (< 目標 4 mrad)
 ▶ 再構成効率: 96.8 % (> 目標 93 %)

計測システム研究会

ファームウェアの統合試験

- ワイヤー飛跡再構成以外のトリガーロジックを加え
 たファームウェア*を一部領域について作成し、回路 121
 合成**・シミュレーションを行った。
 - * 飛跡の選別を行うモジュール (Track Selector) は加えていない。 ** SLR を考慮した回路の配置は行っていない。

シミュレーションの波形解析

- 単ーミューオンの MC シミュレーションから抽出したヒット情報や NSW の
 飛跡情報を 40 MHz で連続入力
- 検出効率などの性能評価は現在進行中

<u>トリガーファームウェアの開発</u>

- XCVU13P FPGAの特徴 (SLR、UltraRAM) を考慮したファー ムウェアの作成が進行中
- 一部のファームウェアについては全領域に拡張し、回路規模 および動作性能が要求を満たすことを確認した。

	ファームウェア開発		MC を用いた動作検証		
	一部領域	全領域	一部領域	全領域	
ワイヤー飛跡再構成	\bigcirc	0	0	0	
ストリップ飛跡再構成	\bigcirc	0	Ongoing	×	
Wire/Strip coincidence	\bigcirc	×	Ongoing	×	
Inner coincidence	\bigcirc	×	Ongoing	×	

<u>今後の計画</u>

- SL 第一試作機が完成したため、ワイヤー飛跡再構成 ファームウェア(トリガー領域全体)の実機テストを行う。
- スライステストの領域をトリガー領域全体に拡張し、
 FPGA 全体での素子の使用率を確認する。
- 後段に出力するミューオン候補の選別を行うアルゴリズム (Track selector)の開発を進める。

Backup

ミューオントリガーの背景事象

- エンドキャップ部におけるミューオントリガーの背景事象
 ① 衝突点由来でない荷電粒子によるトリガー。(フェイクトリガー)
 - ➡ 磁場内部の検出器にヒットを要求することで削減する。
 - ② TGC BW の分解能では削減できない低い p⊤ のミューオンによるトリガー。

HL-LHC におけるミューオントリガーの性能

<u>検出効率</u>

Run-2 トリガーとの検出効率を比較した。
 ▶ 全ての TGC のヒット情報を使用することで p⊤ 閾値以上の検出効率が ~ 4% 向上。
 ▶ 低い p⊤ のミューオンの削減能力が向上。

<u>トリガーレート</u>

● ランダムトリガーで取得した Run-2 データを用いて HL-LHC のトリガーレートを見積もった。
 ▶ 20 GeV 閾値のトリガーレートは ~ 23 kHz。

(Level-0 全体のトリガーレート of 1 MHz の ~ 2.3% を占める。)

▶ MDT を使用することで更なるトリガーレートの削減が期待される。

三野 裕哉

HL-LHC における処理時間の見積もり

HL-LHC において Sector Logic に要求される処理時間

Contents	Latency	
TGC hit signal arrival	0.888 µs	
Coincidence of TGC BW	1.013 µs	0.125 μs
TGC BW and TGC EI coincidence	1.063 µs	
TGC BW and RPC BIS78 coincidence	1.360 µs	
NSW track candidate and TileCal signal arrival	1.425 μs	
TGC BW and NSW (TileCal) coincidence	1.450 μs	
Final selection of track candidate	1.475 μs	-

● 飛跡再構成の処理時間は 0.125 µs 以内であることが要求される。

読み出しファームウェア

- HL-LHC では 4 バンチ交差分 (Bunch Crossing : BC) のデータを読み出す。
 - ▶ フルサイズのファームウェアを作成し、ランダムデータを入力として動作を検証した。

コントロールファームウェア

● MPSoC は Xilinx Zynq UltraScale+ MPSoC を採用。 ▶ SL にマウントされる商用のメザニンカード(Mercury XU5) に実装されている。

Xilinx Virtual CableとAXI C2Cにより、SL上のFPGAのコンフィギュレーションや制御を行う。

- Enclustra Mercury XU5 mezzanine
 - Xilinx Zynq UltraScale+ MPSoC
 - ▶ DDR4 SDRAM, eMMC flash, quad SPI flash,
 - ▶ Gigabit ethernet PHY, USB
 - PetaLinux (Xilinx cross-compiler) を使用して
 MPSoC 上で Linux のブートに成功
- SL 上の FPGA をコントロールするための ファームウェアを開発中
- ファームウェアの動作検証のためにループバック テストと chip-to-chip テストを行う予定

TGC検出器回路系の模式図

三野 裕哉