

Open source consortium of Instrumentation

COMET実験における 計測システムの現状 と将来に向けた新規開発

2021.10.29 上野一樹(KEK IPNS)

計測システム研究会2021@九州

Outline

- Introduction
- COMET experiment
 - COMET detector system
 - Issues
- Radiation studies
- Toward the future experiment
 - NanoBridge FPGA
- Summary

Introduction

Lepton Flavor Violation (LFV)

 $v_e \leftrightarrow v_{\mu} \leftrightarrow v_{\tau}$ Experimentally verified => neutrino oscillation e $\leftrightarrow \mu \rightarrow \tau$ Never observed yet !! Standard Model (SM) + v mass: Branching ratio (BR) $\sim 0(10^{-54})$ Impossible to Discovery of charged LFV \rightarrow beyond SM Beyond SM (SUSY-GUT, SUSY-SEESAW, etc.): BR ~ $O(10^{-15})$ Achievable!

Introduction muon to electron conversion $\mu^{-}N^{-}\rangle e^{-}N$ Signal N $\mu^{-} \rightarrow e^{-}$ Mono-energetic electron $E_e = m_{\mu} - B_{\mu} \sim 105 \text{ MeV (N=A1)}$ Coherent process BGs N $\overline{V_e}$ • Decay in Orbit (DIO)

Current limit BR $< 7 \times 10^{-13}$ (SINDRUM-II@PSI, N=Au)

6

Issues

- (1) high intensity (HI) μ beam
- ② BG reduction

 v_{μ}

③ high res. detector

•Radiative π/μ -capture

•Decay in Flight (DIF)

•Cosmic-rays など

Goal sensitivity (SES) : 3×10^{-17} (x10000 better)⁵

COMET experiment

Phase-I 1. R&D for Phase-II Beam measurement ⇒ Phase-II detector 2. μ-e conversion search SES 0(10⁻¹⁵) (x100 better) ⇒ another detector 6

Detector1:CyDet (Cylindrical Detector System)

CDC (Cylindrical Drift Chamber) electron tracking -> momentum momentum res. < 200 keV/c @ 105 MeV/c

CTH (Cylindrical Trigger Hodoscope) trigger detector scintillator (+ Cherenkov detector) photon detector : fiber+MPPC

Detector2 : StrECAL (Straw tube tracker + Electron calorimeter)

Straw tube tracker electron tracking -> momentum momentum res. < 200 keV/c @ 105 MeV/c

```
Ecal (Electron Calorimeter)
LYSO + APD
Energy, timing, position
trigger, PID
```


ECal

8

Straw tracker

Straw tube tracker

Measurement system(CyDet)

Measurement system(StrECal)

Electronics developments

COMET needs following electronics:

- Central trigger system
- Fast Control & Timing board (FCT)
- CDC FE readout
- CTH FE readout
- Trigger readout
- Straw readout
- Ecal FE readout
- Ecal readout Blue: Japan in charge

It is hard to construct all boards from scratch.

- use technical asset and develop necessary parts
- utilize Open-It
- * each detail was reported in past workshops.

Issues

High intensity beam experiment

- •High rate →M. Miyataki(next talk)
- High radiation → this talk

Radiation effects

- Single Event Upset(SEU)
 - Bit flip by neutron (nuclear reaction, recoil) and high energy heavy particles.
 - FPGA, flash memory
- Type Inversion
 - Hard damage in semiconductor by neutron.
 - semiconductor devices, transistor
- Total Ionizing Dose Effect (TID)
 - Permanent damage by fixed charge from large amounts of radiation (gamma-ray).
 - regulator, SFP
- Displacement Damage Dose (DDD)
 - Permanent damage by displacement of crystal lattice atom from radiation (electron, proton, large amounts of neutrons).

Radiation level @ COMET

• PHITS calculation for Phase-I

Our efforts

- Simulation studies
 - PHITS, Geant4, FLUKA, MARS
- SEU
 - SEU rate measurement@Kobe Tandem facility
 - SEU detection/correction
 - Configuration RAM
 - SEM(IP core from Xilinx)
 - Firmware re-download when UnRecoverable Error (URE) occurring
 - Block RAM
 - Error Correction Code (ECC) (IP core from Xilinx) using Hamming code
 - Cyclic Redundancy Check (CRC)
- TID, DDD
 - irradiation tests

We managed to pass (almost) all the tests for Phase-I.

For details, see my slide in previous workshop.

Towards the future

• In Phase-II, beam intensity will increase by about 20 times.

-> radiation issues will be severer.

- (Maybe some groups concerns similar issues.)
- We have to come up with a solution.
- Example : Using Atom switch

-> NanoBridge FPGA

Atom switch

- Switch capacitance : < 0.2 fF
- SEU free in principle

NanoBridge(NB) FPGA

from NBS

from NBS

from NBS

from NBS

- Features
 - Rad-hard (error rate < 1/100)
 - Low power consumption (< 1/10)
- Current status
 - irradiation test with heavy ion and pulsed laser
 - verification test on satellite

In principle OK for our purpose

We need to confirm feasibility.

- tolerance to very high radiation level
- usability
- etc...

Irradiation tests

Neutron irradiation tests

Tandem accelerator @ Kobe Univ.

- Beam : 3 MeV deuteron
- Target : Be (ϕ 20 mm)
- Neutron energy : 2 MeV (<7 MeV)
- Flux : 4.9x10⁶ Hz/cm² @ 10cm from target (beam current = 1 μ A)

Reactor @ KUR

- Method : Pneumatic Tube
- Rated thermal power : 5 MW
- Neutron energy : broad
- Flux : > 10^{13} Hz/cm²

SEU and DDD measurements

Tandem facility

Neutron irradiation tests

Results of SEU counts

DUT type	Scale	Neutron fluence(n/cm ²)	SEU counts
SRAM	2 kbit	1.6 x 10 ¹¹	5
NB 1	96 CLBs	3.6 x 10 ¹¹	0
N B 2	368 CLBs	1.7 x 10 ¹¹	0
DFF+AS	468 CLBs	1.5 x 10 ¹¹	0

24

Neutron irradiation tests

Leakage current was measured before/after irradiation.

NO DDDs were observed!

Irradiation tests

gamma-ray irradiation tests

- RI Center @ Tokyo Institute of Technology & QST
- Src : Co-60
- Dose rate : 500 Gy/h
- Total dose : 10 kGy

Experimental setup

gamma-ray irradiation tests

Leakage current were measured during irradiation.

NO change was seen up to 6 kGy. After 6 kGy, leakage current increased slightly due to degradation in CMOS.

gamma-ray irradiation tests Shmoo plot before irradiation after 10 kGy irradiation

NO change in signal delay was seen after 10 kGy irradiation.

Future works

It was found that NB-FPGA had potential to use for our experiment.

- (Irradiation tests with higher level)
- Construction of evaluation board
- and more...

Let me know if you are interested in the development.

Summary

- Preparation of COMET experiment is ongoing.
- Many parts of electronics development use Open-It.
- We have 2 issues due to high intensity beam.
 - rate -> next talk
 - radiation -> almost passed for Phase-I
- NB-FPGA is one candidate to use for COMET Phase-II (and other future experiment?).

Buckup

SEU rate

	CRAM		BRAM	
	SEU [[n/cm ²] ⁻¹]	URE [[n/cm ²] ⁻¹]	SEU [n/cm ²] ⁻¹ kB ⁻¹	MBE $[[n/cm^2]^{-1} kB^{-1}]$
Virtex-5	$(4.6 \pm 1.4) \times 10^{-8}$	$(1.4 \pm 0.4) \times 10^{-10}$	$(7.0 \pm 2.2) \times 10^{-11}$	$(9.7 \pm 3.1) \times 10^{-13}$
Artix-7 ¹	$(3.4 \pm 1.0) \times 10^{-8}$	$(1.2 \pm 0.4) \times 10^{-11}$	$(7.6 \pm 2.3) \times 10^{-12}$	
Artix-7 ²	$(2.9 \pm 0.9) \times 10^{-8}$	$(5.4 \pm 1.7) \times 10^{-11}$	$(7.0 \pm 2.3) \times 10^{-12}$	$(1.4 \pm 0.6) \times 10^{-12}$
Kintex-7	$(2.6 \pm 0.8) \times 10^{-8}$	$(5.7 \pm 1.8) \times 10^{-11}$	$(8.7 \pm 2.7) \times 10^{-12}$	

Y. Nakazawa et al., NIMA, 936, 351(2019)

ついてに

2017 計測システム研究会 発表スライドより

興味ある方は→ <u>http://openit.kek.jp/project/RADHARD/RADHARD</u>