MPPCとチェレンコフ光を利用した検出器 - Cherenkov timing detector -

白鳥 昂太郎 for the J-PARC E50 collaboration

Research Center for Nuclear Physics (RCNP), Osaka University

計測システム研究会2022 @ J-PARC

17th Nov. 2022

Charmed baryon spectroscopy experiment: J-PARC E50

- Study of effective degrees of freedom of hadron: Diqaurk correlation
- \Rightarrow Charmed baryon spectroscopy: q-q + Q system

2

Overview of E50 spectrometer system

• High-rate beam detectors

- Scintillation Fiber Tracker
- Cherenkov Timing detector: T0

• High-performance PID detectors

- High timing-resolution TOF wall: RPC
- RICH & Beam RICH
- Threshold-type Cherenkov detector
- Large size detectors
 - Large size drift chambers
 - Forward TOF wall
 - Muon detector: RPC

– Photon detector– Gas detector

- * Streaming-type trigger-less DAQ
 - Only timing (TDC) data taking

Overview of E50 spectrometer system

• High-rate beam detectors

- Scintillation Fiber Tracker
- Cherenkov Timing detector: T0

*****MPPC + Cherenkov: Timing w/ >3 P.E. detection

- High-performance PID detectors
 - High timing-resolution TOF wall: RPC
 - RICH & Beam RICH
 - Threshold-type Cherenkov detector

**MPPC* + *Cherenkov: PID w/ 1 P.E. detection*

Yuji Yamamoto

- Large size detectors
 - Large size drift chambers: ASD card
 - Forward TOF wall
 - Muon detector: RPC

* Streaming-type trigger-less DAQ

• Only timing (TDC) data taking

Cherenkov Timing detector: T0

Basic performance

T0 detector overview

***** Requirements

- $\Delta T < 70 \text{ ps}(\sigma)$
- ~3 MHz/segment
- Time-walk correction w/o ADC
 - Discriminator(comparator) + TDC
- Segment by Acrylic (PMMA)
- \Rightarrow Cross shape: X-type
 - Cherenkov angle direction
 - Both ends readout
- 3-mm width segment + MPPC
 - S13360-3050PE (3 mm, 50 μm)
 - Amp: ~10 ns width
- \Rightarrow Time resolution: $\Delta T \sim 40 \text{ ps}(\sigma)$
 - No position dependence
 - $V_{ov} = +7V$, Vth = 3.5 p.e.

T0 detector overview

***** Requirements

- $\Delta T < 70 \text{ ps}(\sigma)$
- ~3 MHz/segment
- Time-walk correction w/o ADC
 - Discriminator(comparator) + TDC
- Segment by Acrylic (PMMA)
- \Rightarrow Cross shape: X-type
 - Cherenkov angle direction
 - Both ends readout
- 3-mm width segment + MPPC
 - S13360-3050PE (3 mm, 50 μm)
 - Amp: ~10 ns width
- \Rightarrow Time resolution: $\Delta T \sim 40 \text{ ps}(\sigma)$
 - No position dependence
 - $V_{ov} = +7V$, Vth = 3.5 p.e.

7

T0 detector overview

*****Requirements

- $\Delta T < 70 \text{ ps}(\sigma)$
- ~3 MHz/segment
- Time-walk correction w/o ADC
 - Discriminator(comparator) + TDC
- Segment by Acrylic (PMMA)
- \Rightarrow Cross shape: X-type
 - Cherenkov angle direction
 - Both ends readout
- 3-mm width segment + MPPC
 - S13360-3050PE (3 mm, 50 μm)
 - Amp: ~10 ns width
- \Rightarrow Time resolution: $\Delta T \sim 40 \text{ ps}(\sigma)$
 - No position dependence
 - $V_{ov} = +7V$, Vth = 3.5 p.e.

MPPC amplifier

- High speed operational amp: AD8000
- Damping resistance: 22Ω
- Overshoot suppression by pole-zero cancelation resistance: 390Ω

T0 amplifier

(Version 1.5×39 ch)

R&D of Cherenkov Timing detector

- Convectional detector: Plastic scintillator + MPPC/PMT \Rightarrow ~100 ps(σ)
- \Rightarrow How can we get better resolution ?
 - High-momentum: Good TOF measurement
 - High rate: Fast response and discarding accidental coincidence
- \Rightarrow Previous study: Quartz + MCP-PMT $\Rightarrow \sim 10 \text{ ps}(\sigma)$ resolution
 - A. Ronzhin et al., NIM A 623 (2010) 931, 10.1016/j.nima.2010.08.025
 - Expensive radiator and not suitable PMT for fine segment
- ⇒ Acrylic(Cheap) + MPPC(fine segment)
 - X-chape: No position dependence by mean time

*****R&D items

- 1. Fine-segment study: $3 \text{ mm} \Rightarrow 0.5 \text{ mm}$
 - No thickness dependence of time resolution
- 2. High-rate study: Up to several MHz
 - Signal processing for suppressing pile-up effect: Schottky Barrier Diode (SBD)

Fine-segment study

 $3 \text{ mm} \Rightarrow 0.5 \text{ mm width}$

Simulation: Radiator width dependence

- Simulation by Geant4 Optical photon
 - Realistic parameters: PMMA, MPPC and so on
- 3-mm radiator light yield data: 25 p.e. @ 3 mm
 - Single-end P.E. data
 - Normalization of # of p.e.
 - \Rightarrow Reflection probability of PMMA: 99.5%
- Light yield is decreased.
 - ~16 p.e. @ 0.5 mm
- \Rightarrow Small loss of fast component
 - Small number of reflections
- ***** Production by company
 - Cut from one PMMA board
- \Rightarrow Actual fine segment test

Test experiment @ LEPS

- Time resolution evaluation by β ~1 condition
 - e^{\pm} from γ -ray conversion
 - Time walk correction by pulse height: DRS4 and HUL HR-TDC
 - LEPS2 discriminator for RPC
 - Comparator output: Both leading and trailing edge
 - N.Tomida et al., JINST 9 C10008 2014

LEPS2 discriminator

Number of photoelectrons @ +20 mm

- Average: ~20 p.e.
- Light yield tendency of both ends is consistent.

Number of photoelectrons @ +20 mm

15

Time resolution: @ Vth = 3.5 p.e.

- All data: Similar time resolution of ~45 $ps(\sigma)$.
 - Time resolution is kept. = Same light yield
- * 3.0 mm \Rightarrow 0.5 mm: \times 6 higher counting rate
 - 3 MHz/3 mm @ 30 MHz \Rightarrow 3 MHz/0.5 mm @ 180 MHz

* 0.3 mm also tested \Rightarrow Time resolution of ~45 ps(σ)

High-rate study

Signal processing for suppressing pile-up effect: Schottky Barrier Diode (SBD)

R&D of signal processing

- 1. Ringing suppression
 - Pile-up effects to time resolution
 - Time resolution: 43 ps \Rightarrow 54 ps @ High-rate condition
- ⇒ Schottky Barrier Diode (SBD)
 was used as kind of filtering methods.

2. TOT measurement

- Only TDC measurement without ADC
 - Discriminator(comparator) + TDC
- Time-walk correction
- by Time-Over-Threshold (TOT) method
 - Width = (Leading edge Trailing edge)
- Straight forward method doesn't well work.
 - $\Delta T \sim 70 \text{ ps}(\sigma) \Leftrightarrow \Delta T \sim 40 \text{ ps}(\sigma)$

\Rightarrow SBD + slow shaping

SBD: BAT series, RB series

Name	V_{F} [mV]	$I_{F}[\mu A]$	I _R [nA]	Test	Comments
BAT17	220	10	5	0	It can be used by adjusting amp gain.
BAT15	110	10	_	0	Suitable responses
BAT63	120	100	—	0	Suitable responses
BAT165	150	10	80	×	Large overshoot signal
RB168MM-30TF	300	100.0	2	×	Large overshoot signal
RB510SM-30FH	100	1.0	6	Δ	Small overshoot signal
RB510VM-30FH	100	1.0	6	Δ	Small overshoot signal
RB520SM-30T2R-J	80	1.0	40	×	Large overshoot signal
RB530SM-30T2R-J	90	1.0	25	×	Large overshoot signal
RB540VM-30FHTE-17-J	90	1.0	25	×	Large overshoot signal

SBD: BAT ser	ries, RB			
Name	V _F [mV]	$I_{F}[\mu A]$	I _R [nA]	
BAT17	220	10	5	Test circuit ain.
BAT15	110	10	_	BAT63
BAT63	120	100	—	Student: Too difficult soldering ! Me: No, take it easy. Be used to it.
BAT165	150	10	80	
RB168MM-30TF	300	100.0	2	0 -44.2ns 12.8mV 2 35.6ns 12.8mV △60.0ns △0.00V W/o SBD
RB510SM-30FH	100	1.0	6	
RB510VM-30FH	100	1.0	6	
RB520SM-30T2R-J	80	1.0	40	
RB530SM-30T2R-J	90	1.0	25	Overshoot w/ SBD
RB540VM-30FHTE-17-J	90	1.0	25	
				(] === 200mV @ === 100mV @ === 100mV (] === 100mV) (20ms (=) 19.00ms) (] ₹ -342mV DC

Time-Over-Threshold method

- Signal width is not sensitive to pulse height by our MPPC amp.
 - Width is saturated in higher pulse height.
 - Ringing signal affects TOT measuring.
- \Rightarrow Straight forward method doesn't well work.
 - $\Delta T \sim 70 \text{ ps}(\sigma) \Leftrightarrow \Delta T \sim 40 \text{ ps}(\sigma)$

★ Extract pulse height information from width → "SBD + Integrator circuit"

- Test RC integrator circuit
 - $\tau = 2.4 \text{ ns}$
 - $R = 51 \Omega, C = 47 pF$
 - Signal width: ~15 ns
 - Original: ~10 ns
 - Pulse height: $\times 1/2$

High-rate test @ ELPH

T0 detectors ← Al converter: 1 mm $e^+/e^- + \gamma$ Beam **Time-Of-Flight measurement Fiber trackers**

- Time resolution evolution
- \Rightarrow Time-Of-Flight by mean times of 3 detectors
- Counting rate (event by event): 10 kHz 5 MHz
- Modules: HUL HR-TDC & DRS4 (Waveform: ADC)
 - LEPS2 discriminator for RPC

Rate dependence: SBD filter

- No improvement between data w/ SBD and w/o SBD
 - Improvement from previous study

⇒ Base line fluctuation on waveform (No SBD due to unexpected PH reduction with DRS4)

 \Rightarrow It affected to time-walk correction. ($\Delta T_{BL} \sim 30$ ps contribution)

- No improvement between data w/ SBD and w/o SBD
 - Improvement from previous study

⇒ Base line fluctuation on waveform (No SBD due to <u>unexpected PH reduction with DRS4</u>)

 \Rightarrow It affected to time-walk correction. ($\Delta T_{BL} \sim 30$ ps contribution)

Rate dependence: TOT (Just try)

- No rate dependence by TOT method
 - If there were dependences as of PH, resolution became worse. (X in Fig(R))

★ However, not best resolution (Divider × 1/2, SBD × 2/3, RC × 1/2 & Both ADC and TDC)
⇒ Too low pulse height (low Vth ~7 mV) & long Lemo cable (attenuation)

Controlled condition data: Low-rate @ LEPS

• Almost same resolution by time-walk correction using Pulse height and TOT

- ⇒ To optimize RC circuit and Revenge of High-rate test
 - To design optimum amplifier circuit...?

Other applications

* New ASIC for MPPC: High-rate capability and high-timing resolution • SPADI Alliance TaskForce (R&D TE to be formed)

• SPADI Alliance TaskForce (R&D TF to be formed)

• Fine-segment property of Cherenkov radiator

• sub mm segment with good time resolution

\Rightarrow High time-resolution and good position-resolution detector

- Timing detector + tracker
- X shape \Rightarrow Simple bar
- Signal processing by Schottky Barrier Diode (SBD)
 - Applied to shaping circuit
 - Overshoot suppression, tail cutting, ringing suppression and noise filtering
 - Filtering for dark current of MPPC
 - Suppression of baseline fluctuation and screening out radiation damage
- Other detectors
 - Poor man's TOP detector: Acrylic + MPPC
 - Phoswich detector: Cherenkov fast comment + scintillation light

Summary

- Charmed baryon spectroscopy experiment: J-PARC E50
- \Rightarrow Multi-purpose spectrometer system with trigger-less streaming DAQ
 - Various detectors using MPPC + Cherenkov radiation
- Cherenkov timing detector for high-rate beam measurement: Requirement: 3 MHz/3-mm segment
 - Acrylic X-shape Cherenkov radiator + MPPC readout with fast shaping amplifier
 - Timing resolution of ~40 $ps(\sigma)$ @ Low rate
- Fine-segment study
 - X-shape Acrylic radiator with thin width: 0.5 mm, 1.0 mm, 3.0 mm
 - Light yield and time resolutions were kept by using fine segment radiators.
- Signal processing study for high-counting rate measurement
 - Suppression of pile-up effect by filtering with Schottky Barrier Diode (SBD): BAT63
 - TOT method: Time-walk correction by signal width with SBD + Integrator circuit
 - \Rightarrow No rate dependence by TOT method
 - Similar resolution between time-walk correction by Pulse height and TOT
- Other applications
 - High time-resolution and good position-resolution detector
 - Application using signal processing by Schottky Barrier Diode (SBD)
 - Poor man's TOP, Phoswich type detector for particle identification

Backup slides

Overview of E50 spectrometer system

Silicorn sheet for contact between radiator and MPPC

WaveLength (nm)

- We can buy MISUMI (25 µm or 50 µm sheet as roll).
- Reflection index: n~1.405
- \Rightarrow Light yield $\times 1.3$
 - 3 mm MPPC and 3 mm × 3 mm × 150 mm scintillator and PMMA

LEPS discriminator

- 16 ch discriminator: Reading & Trailing
 - Narrow width signal can output.
- RSPELC \Rightarrow LVDS: Direct connection to HUL HR-TDC
 - Ground pin positions are changed.

N. Tomida et al., 2014 JINST 9 C10008

Narrow signal readout of MPPC

- By using Schottky barrier diode (SBD)
 - Kind of rectifier diode: Quick response

• Test circuit: **BAT17**

- It makes input pulse narrower one by using a subtraction circuit.
- Schottky barrier diode is series connection at the end of circuit.

J. M. Yebras, P. Antoranz, J.M.Miranda Optical Engineering 51(7), 074004 (July 2012)