MPPCとチェレンコフ光を利用した検出器 －Cherenkov timing detector－

白鳥昂太郎
for the J－PARC E50 collaboration

Research Center for Nuclear Physics（RCNP），Osaka University
計測システム研究会2022＠J－PARC
17 ${ }^{\text {th }}$ Nov． 2022

Charmed baryon spectroscopy experiment: J-PARC E50

- Study of effective degrees of freedom of hadron: Diqaurk correlation
\Rightarrow Charmed baryon spectroscopy: $q-q+\mathrm{Q}$ system

Light quark baryon

* Experiment: Production and decay
- Missing mass method: $\pi^{-}+\mathrm{p} \rightarrow \mathbf{Y}_{\mathbf{c}}{ }^{*+}+\mathrm{D}^{*-}$
+ Decay measurement
$\rightarrow \mathbf{K}^{+} \pi^{-} \pi^{-}$
\Rightarrow High-intensity $2^{\text {ndary }}$ beam @ 20 GeV/c
- $30 \mathrm{MHz} \Rightarrow \sim 2 \mathrm{MHz}$ reaction rate

Overview of E50 spectrometer system

- High-rate beam detectors
- Scintillation Fiber Tracker
- Cherenkov Timing detector: T0
- High-performance PID detectors
- High timing-resolution TOF wall: RPC
- RICH \& Beam RICH
- Threshold-type Cherenkov detector
- Large size detectors
- Large size drift chambers
- Forward TOF wall
- Muon detector: RPC
- Photon detector
- Gas detector
* Streaming-type trigger-less DAQ

Overview of E50 spectrometer system

- High-rate beam detectors
- Scintillation Fiber Tracker
- Cherenkov Timing detector: T0
*MPPC + Cherenkov: Timing w/ >3 P.E. detection
- High-performance PID detectors
- High timing-resolution TOF wall: RPC
- RICH \& Beam RICH
- Threshold-type Cherenkov detector
*MPPC + Cherenkov: PID w/ 1 P.E. detection
- Large size detectors
- Large size drift chambers: ASD card
- Forward TOF wall

Yuji Yamamoto

- Muon detector: RPC

* Streaming-type trigger-less DAQ
- Only timing (TDC) data taking

Cherenkov Timing detector: T0

Basic performance

T0 detector overview

* Requirements

- $\Delta \mathrm{T}<70 \mathrm{ps}(\sigma)$
- ~3 MHz/segment
- Time-walk correction w/o ADC
- Discriminator(comparator) + TDC
- Segment by Acrylic (PMMA)
\Rightarrow Cross shape: X-type
- Cherenkov angle direction
- Both ends readout
- 3-mm width segment + MPPC
- S13360-3050PE ($\mathbf{3} \mathrm{mm}, 50 \mu \mathrm{~m}$)
- Amp: ~10 ns width
\Rightarrow Time resolution: $\Delta \mathrm{T} \sim 40 \mathrm{ps}(\sigma)$
- No position dependence
- $\mathrm{V}_{\mathrm{ov}}=+7 \mathrm{~V}$, $\mathrm{Vth}=3.5$ p.e.

T0 detector overview

* Requirements

- $\Delta \mathrm{T}<70 \mathrm{ps}(\sigma)$
- ~3 MHz/segment
- Time-walk correction w/o ADC
- Discriminator(comparator) + TDC
- Segment by Acrylic (PMMA)
\Rightarrow Cross shape: X-type
- Cherenkov angle direction
- Both ends readout
- 3-mm width segment + MPPC
- S13360-3050PE ($\mathbf{3} \mathrm{mm}, 50 \mu \mathrm{~m}$)
- Amp: ~10 ns width
\Rightarrow Time resolution: $\Delta \mathrm{T} \sim 40 \mathrm{ps}(\sigma)$
- No position dependence
- $\mathrm{V}_{\mathrm{ov}}=+7 \mathrm{~V}$, Vth $=3.5$ p.e.

T0 detector overview

V_{ov} dependence: $\Delta \mathrm{T}$

* Requirements

- $\Delta \mathrm{T}<70 \mathrm{ps}(\sigma)$
- ~3 MHz/segment
- Time-walk correction w/o ADC
- Discriminator(comparator) + TDC
- Segment by Acrylic (PMMA)
\Rightarrow Cross shape: X-type
- Cherenkov angle direction
- Both ends readout
- 3-mm width segment + MPPC
- S13360-3050PE ($\mathbf{3} \mathrm{mm}, 50 \mu \mathrm{~m}$)
- Amp: ~10 ns width
\Rightarrow Time resolution: $\Delta \mathrm{T} \sim 40 \mathrm{ps}(\sigma)$
- No position dependence
- $\mathrm{V}_{\mathrm{ov}}=+7 \mathrm{~V}$, Vth $=3.5$ p.e.

MPPC amplifier

T0 amplifier
(Version $1.5 \times 39 \mathrm{ch}$)

- High speed operational amp: AD8000
- Damping resistance: 22Ω
- Overshoot suppression by pole-zero cancelation resistance: 390Ω

R\&D of Cherenkov Timing detector

- Convectional detector: Plastic scintillator + MPPC/PMT $\Rightarrow \sim 100 \mathrm{ps}(\sigma)$
\Rightarrow How can we get better resolution?
- High-momentum: Good TOF measurement
- High rate: Fast response and discarding accidental coincidence
\Rightarrow Previous study: Quartz + MCP-PMT $\Rightarrow \sim 10 \mathrm{ps}(\sigma)$ resolution
- A. Ronzhin et al., NIM A 623 (2010) 931, 10.1016/j.nima.2010.08.025
- Expensive radiator and not suitable PMT for fine segment
\Rightarrow Acrylic(Cheap) + MPPC(fine segment)
- X-chape: No position dependence by mean time

* R\&D items

1. Fine-segment study: $\mathbf{3} \mathbf{~ m m} \Rightarrow \mathbf{0 . 5} \mathbf{~ m m}$

- No thickness dependence of time resolution

2. High-rate study: Up to several MHz

- Signal processing for suppressing pile-up effect: Schottky Barrier Diode (SBD)

Fine-segment study

$\mathbf{3 ~ m m} \Rightarrow \mathbf{0 . 5} \mathbf{~ m m}$ width

Simulation: Radiator width dependence

- Simulation by Geant4 Optical photon
- Realistic parameters: PMMA, MPPC and so on
- 3-mm radiator light yield data: 25 p.e. @ 3 mm
- Single-end P.E. data
- Normalization of \# of p.e.
\Rightarrow Reflection probability of PMMA: 99.5\%
- Light yield is decreased.
-~16 p.e. @ 0.5 mm
\Rightarrow Small loss of fast component
- Small number of reflections
* Production by company
- Cut from one PMMA board
\Rightarrow Actual fine segment test

Test experiment @ LEPS

- Time resolution evaluation by $\beta \sim 1$ condition
- $\mathbf{e}^{ \pm}$from γ-ray conversion
- Time walk correction by pulse height: DRS4 and HUL HR-TDC
- LEPS2 discriminator for RPC
- Comparator output: Both leading and trailing edge
- N.Tomida et al., JINST 9 C10008 2014

Number of photoelectrons @ +20 mm

- Average: ~20 p.e.
- Light yield tendency of both ends is consistent.

Number of photoelectrons @ +20 mm

- Average: ~20 p.e.
* Handwriting curbs
- Light yield tendency of both ends is consistent.
1.0 mm
0.5 mm

Number of photoelectrons (measured)

- X Cherenkov Up
\$ X Cherenkov Dow $\phi \quad x$ Cherenkov All
\square

T. Akaishi, Master thesis

Position [mm]

Number of photoelectrons @ +20 mm

- Sum of both ends and its distribution are same.
\Rightarrow Collection of Cherenkov lights w/o surface loss

Time resolution: @ Vth = 3.5 p.e.

Sum of both ends

- All data: Similar time resolution of $\sim 45 \mathrm{ps}(\sigma)$.
- Time resolution is kept. = Same light yield
$* 3.0 \mathrm{~mm} \Rightarrow 0.5 \mathrm{~mm}: \times 6$ higher counting rate
$\cdot 3 \mathrm{MHz} / 3 \mathrm{~mm} @ 30 \mathrm{MHz} \Rightarrow 3 \mathrm{MHz} / 0.5 \mathrm{~mm} @ 180 \mathrm{MHz}$
$* 0.3 \mathrm{~mm}$ also tested \Rightarrow Time resolution of $\sim 45 \mathrm{ps}(\sigma)$

High-rate study

Signal processing for suppressing pile-up effect: Schottky Barrier Diode (SBD)

R\&D of signal processing

1. Ringing suppression

- Pile-up effects to time resolution
- Time resolution: $43 \mathrm{ps} \Rightarrow 54 \mathrm{ps}$ @ High-rate condition
\Rightarrow Schottky Barrier Diode (SBD)
was used as kind of filtering methods.

2. TOT measurement

- Only TDC measurement without ADC
- Discriminator(comparator) + TDC
- Time-walk correction
by Time-Over-Threshold (TOT) method
- Width = (Leading edge - Trailing edge)
- Straight forward method doesn't well work.
- $\Delta \mathrm{T} \sim 70 \mathrm{ps}(\sigma) \Leftrightarrow \Delta \mathrm{T} \sim 40 \mathrm{ps}(\sigma)$
\Rightarrow SBD + slow shaping

Time-Over-Threshold (TOT) method

Schottky barrier diode: SBD

- Kind of rectifier diode
- Quick responses

- Smaller forward voltage: $\mathbf{1 0 0} \mathbf{- 2 0 0} \mathbf{~ m V}$ level
* Revered pulses and smaller pulses are suppressed.
\Rightarrow Ringing suppression (+ dark current suppression)
- BAT63: Series connection to amplifier
- Signals width and leading slope: Same
- $\mathrm{V}_{\text {out }}=0.62 \times\left(\mathrm{V}_{\text {in }}\right)-70.0$ (Minimum input: $\left.\sim 120 \mathrm{mV}\right)$

Waveform by DRS4: 1 GHz sampling

Series connection

Schottky barrier diode: SBD

- Kind of rectifier diode
- Quick responses

- Smaller forward voltage: 100-200 mV level
* Revered pulses and smaller pulses are suppressed.
\Rightarrow Ringing suppression (+ dark current suppression)
- BAT63: Series connection to amplifier
- Signals width and leading slope: Same
- $\mathrm{V}_{\text {out }}=0.62 \times\left(\mathrm{V}_{\text {in }}\right)-70.0$ (Minimum input: $\left.\sim 120 \mathrm{mV}\right)$

Series connection

* Low-rate data @ LEPS
$\Rightarrow \Delta T \sim 45 \mathrm{ps}(\sigma)$
\Rightarrow SBD can be used as filter circuit.

SBD: BAT series, RB series

Name	$\mathbf{V}_{\mathbf{F}}[\mathbf{m V}]$	$\mathbf{I}_{\mathbf{F}}[\mu \mathrm{A}]$	$\mathbf{I}_{\mathbf{R}}[\mathrm{nA}]$	Test	Comments
BAT17	220	10	5	\bigcirc	It can be used by adjusting amp gain.
BAT15	110	10	-	\bigcirc	Suitable responses
BAT63	120	100	-	\bigcirc	Suitable responses
BAT165	150	10	80	\times	Large overshoot signal
RB168MM-30TF	300	100.0	2	\times	Large overshoot signal
RB510SM-30FH	100	1.0	6	\triangle	Small overshoot signal
RB510VM-30FH	100	1.0	6	\triangle	Small overshoot signal
RB520SM-30T2R-J	80	1.0	40	X	Large overshoot signal
RB530SM-30T2R-J	90	1.0	25	X	Large overshoot signal
RB540VM-30FHTE-17-J	90	1.0	25	X	Large overshoot signal

SBD: BAT series, RB series

Name	$\mathrm{V}_{\mathrm{F}}[\mathrm{mV}]$	$\mathrm{I}_{\mathrm{F}}[\mu \mathrm{A}]$	$\mathrm{I}_{\mathrm{R}}[\mathrm{nA}]$	
BAT17	220	10	5	Test circuit ain.
BAT15	110	10	-	
BAT63	120	100	-	Student: Too difficult soldering !
BAT165	150	10	80	Me: No, take it easy. Be used to it.
RB168MM-30TF	300	100.0	2	w/o SBD
RB510SM-30FH	100	1.0	6	Nom
RB510VM-30FH	100	1.0	6	
RB520SM-30T2R-J	80	1.0	40	
RB530SM-30T2R-J	90	1.0	25	Overshoot w/ SBD
RB540VM-30FHTE-17-J	90	1.0	25	

Time-Over-Threshold method

- Signal width is not sensitive to pulse height by our MPPC amp.
- Width is saturated in higher pulse height.
- Ringing signal affects TOT measuring.
\Rightarrow Straight forward method doesn't well work.
- $\Delta \mathrm{T} \sim 70 \mathrm{ps}(\sigma) \Leftrightarrow \Delta \mathrm{T} \sim 40 \mathrm{ps}(\sigma)$
* Extract pulse height information from width
\Rightarrow "SBD + Integrator circuit"
- Test RC integrator circuit
- $\tau=2.4 \mathrm{~ns}$
- $\mathrm{R}=51 \Omega, \mathrm{C}=47 \mathrm{pF}$

Rate dependence: SBD filter

- No improvement between data w/ SBD and w/o SBD
- Improvement from previous study
\Rightarrow Base line fluctuation on waveform (No SBD due to unexpected PH reduction with DRS4)
\Rightarrow It affected to time-walk correction. ($\Delta \mathrm{T}_{\mathrm{BL}} \sim 30 \mathrm{ps}$ contribution)

Rate dependence: SBD filter

- No improvement between data w/ SBD and w/o SBD
- Improvement from previous study
\Rightarrow Base line fluctuation on waveform (No SBD due to unexpected PH reduction with DRS4)
\Rightarrow It affected to time-walk correction. ($\Delta \mathrm{T}_{\mathrm{BL}} \sim 30 \mathrm{ps}$ contribution)

Rate dependence: TOT (Just try)

Pulse height data W/ and W/o SBD

Pulse height and TOT data

- No rate dependence by TOT method
- If there were dependences as of PH , resolution became worse. (\times in $\operatorname{Fig}(\mathbf{R})$)
* However, not best resolution (Divider $\times 1 / 2, \mathrm{SBD} \times 2 / 3, \mathrm{RC} \times 1 / 2 \&$ Both ADC and TDC)
\Rightarrow Too low pulse height (low Vth $\sim 7 \mathrm{mV}$) \& long Lemo cable (attenuation)

Controlled condition data: Low-rate @ LEPS

- Almost same resolution by time-walk correction using Pulse height and TOT
\Rightarrow To optimize RC circuit and Revenge of High-rate test
- To design optimum amplifier circuit...?

Other applications

* New ASIC for MPPC: High-rate capability and high-timing resolution
- SPADI Alliance TaskForce (R\&D TF to be formed)
- Fine-segment property of Cherenkov radiator
- sub mm segment with good time resolution
\Rightarrow High time-resolution and good position-resolution detector
- Timing detector + tracker

- Signal processing by Schottky Barrier Diode (SBD)
- Applied to shaping circuit
- Overshoot suppression, tail cutting, ringing suppression and noise filtering
- Filtering for dark current of MPPC
- Suppression of baseline fluctuation and screening out radiation damage
- Other detectors
- Poor man's TOP detector: Acrylic + MPPC
- Phoswich detector: Cherenkov fast comment + scintillation light
- Charmed baryon spectroscopy experiment: J-PARC E50
\Rightarrow Multi-purpose spectrometer system with trigger-less streaming DAQ
- Various detectors using MPPC + Cherenkov radiation
- Cherenkov timing detector for high-rate beam measurement: Requirement: $\mathbf{3} \mathbf{M H z} / 3-\mathrm{mm}$ segment
- Acrylic X-shape Cherenkov radiator + MPPC readout with fast shaping amplifier
- Timing resolution of $\sim 40 \mathrm{ps}(\sigma)$ @ Low rate
- Fine-segment study
- X-shape Acrylic radiator with thin width: $0.5 \mathrm{~mm}, \mathbf{1 . 0} \mathbf{~ m m}, \mathbf{3 . 0} \mathbf{~ m m}$
- Light yield and time resolutions were kept by using fine segment radiators.
- Signal processing study for high-counting rate measurement
- Suppression of pile-up effect by filtering with Schottky Barrier Diode (SBD): BAT63
- TOT method: Time-walk correction by signal width with SBD + Integrator circuit
\Rightarrow No rate dependence by TOT method
- Similar resolution between time-walk correction by Pulse height and TOT

- Other applications

- High time-resolution and good position-resolution detector
- Application using signal processing by Schottky Barrier Diode (SBD)
- Poor man's TOP, Phoswich type detector for particle identification

Backup slides

Overview of E50 spectrometer system

- High-rate beam detectors
- Scintillation Fiber Tracker
- Fiber + MPPC array
- Cherenkov Timing detector: T0
- Acrylic(PMMA) + MPPC + amplifier
- High-performance PID detectors
- High timing-resolution TOF wall: RPC
- Gas detector + amplifier
- RICH \& Beam RICH
- Aerogel \& Gas + MPPC/MPPC array
- Threshold-type Cherenkov detector: Vth AC
- Low-index Aerogel + MPPC array
- Large size detectors for scattered particles
- Large size drift chambers
- Gas detector + amplifier
- Forward TOF wall
- Plastic scintillator + PMT (+RPC)
- Muon detector
- Tracker-RPC (+Plastic scintillator + PMT)

Silicorn sheet for contact between radiator and MPPC

この製品へのお問合せ先 テクニカルサポートセンターT－CATグループ（爱知㦁槽市）tcat＠nitto．co．jp SB－469」

－Good transparency： $\mathbf{\sim 3 2 0} \mathbf{n m}$
－ $\mathbf{\sim 0 . 1 ~ m m}$ thickness with glue for fixing tightly
－We can buy MISUMI（ $25 \mu \mathrm{~m}$ or $50 \mu \mathrm{~m}$ sheet as roll）．

－Reflection index：n～1．405
\Rightarrow Light yield $\times 1.3$
－ 3 mm MPPC and $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 150 \mathrm{~mm}$ scintillator and PMMA

LEPS discriminator

- 16 ch discriminator: Reading \& Trailing
- Narrow width signal can output.

N. Tomida et al., 2014 JINST 9 C10008
- RSPELC \Rightarrow LVDS: Direct connection to HUL HR-TDC
- Ground pin positions are changed.

Narrow signal readout of MPPC

- By using Schottky barrier diode (SBD)
J. M. Yebras, P. Antoranz, J.M.Miranda
- Kind of rectifier diode: Quick response

Optical Engineering 51(7),
074004 (July 2012)

Fig. 4 Pulse shortening system based on reflectometry (a) and on subtractor fed with stubs of different lengths (b).

- Test circuit: BAT17
- It makes input pulse narrower one by using a subtraction circuit.
- Schottky barrier diode is series connection at the end of circuit.

