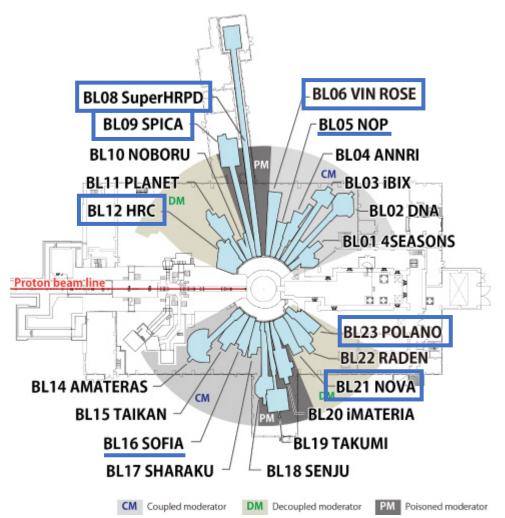


KENS MLFのDAQシステムとストレージシステム


KEK 物質構造科学研究所 中性子科学研究系 瀬谷智洋

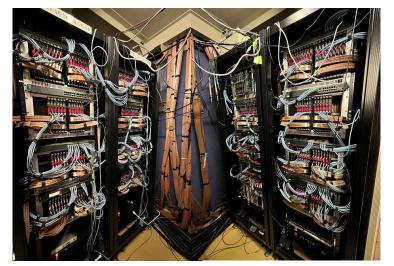
2022年11月17日

はじめに

- KENS(KEK Neutron Science Devision)ではJ-PARC MLFで8本のビームラインを運用している。この内**DAQ-Middlewareを使用してデータ収集を行っている6本のビームライン**について、KENS-DAQグループにて実験用計算機システムの構築と運用を行っている。
- ●システムの構築と運用の効率化、導入コストの削減のため2017年よりKVM (Kernel-based Virtual Machinn)による仮想化に取り組んでおり、現在では全てのビームラインにて**仮想化環境によるデータ収集**を行っている。これらは統一された構成となっており、OSやDAQ-MWのバージョンの他、ローカルネットワークの構成ルールなど、様々な点で共通化が図られている。また、5年に1回ハードウエアのリプレイスを実施しており、新OSへの対応などもその際に順次実施している。
- ●2017年**以前は野放し**の状態でサーバーが運用されており、ストレージ残量が無いのに実験を行いデータを取りこぼしたり、故障に気が付かずに実験を進めてしまうような状態だったが、**統合監視システムを導入**し、サーバーの健全性や**リソースの状態を常に監視する**体制を整えた。
- ●共通化はソフトウエアに限らず、ハードウエアでも行われており、搭載しているメモリーモジュールやストレージ なども**極力同一のも**のを選定するようにしている。
- ●安定的な実験遂行のため、実験用計算機環境とストレージシステムシステムの整備を行った。

MLF:物質生命科学研究施設

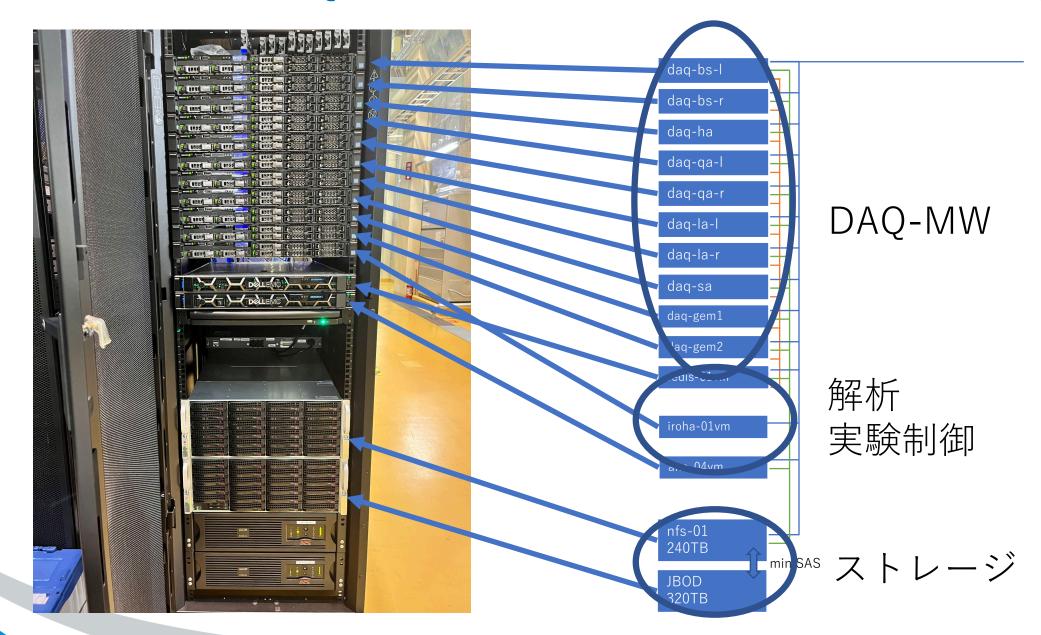
全21ビームライン中、 8ビームラインをKEKが運用している。



KEK ビームラインのDAQシステム

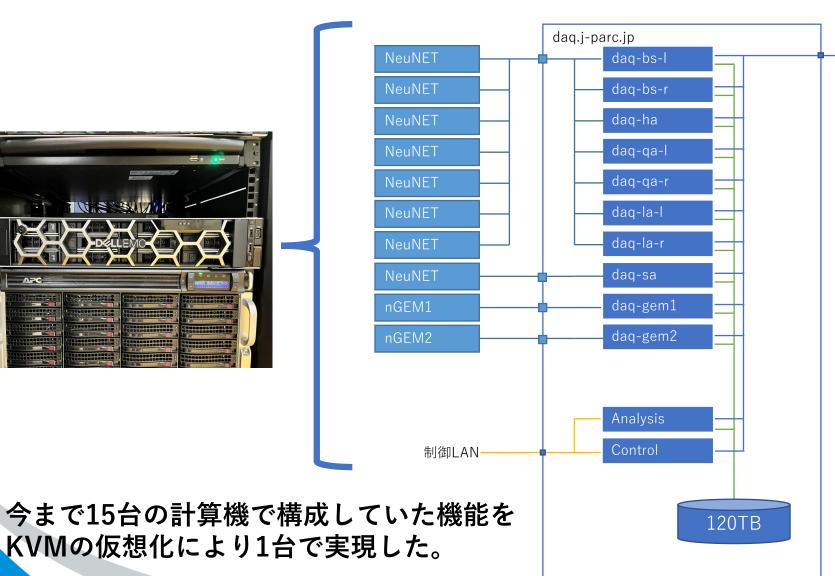
- NeuNETはVMEのPSD(Position Sensitive Detector)用に開発された リードアウトモジュール。
- **SiTCP**でデータを読み出す。
- 1ボードあたり40MSPSのADCを 16chを搭載し、1枚で8本のPSD の信号を処理する。
- MLFのおよそ8割の実験装置で使われる。

BL09 真空散乱槽



BL09のNeuNET

	PSD	NeuNET	ADC ch	DAQサーバー
BL06	-	-	-	2
BL08	704	88	1408	10
BL09	1592	199	3184	10
BL12	384	48	768	2
BL21	976	122	1952	7
BL23	352	44	704	3
合計	4008	501	8016	34


- 全体で4008本のPSD、8016chの信号を 処理する。
- 501枚のNeuNETボードと34台のDAQ サーバーでDAQしている。
- DAQソフトは**DAQ-MW**で、MLF用のコンポーネントを作成してデータ収集している。

仮想化以前のDAQシステム

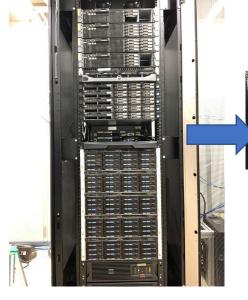
仮想化されたDAQシステム

Physical Machine

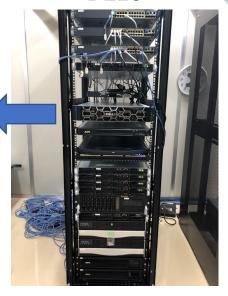
Virtual Machine

- 仮想化によりOS、DAO-MWのインス トール作業の**大幅な作業量**の低減。 (KVMイメージをクローンすれば良い)
- リプレイス作業の簡素化
- バックアップもKVMイメージをまるごと **バックアップ**すれば良い。
- 6台の実験装置で共通の構成。
- ・ サーバーの導入/管理コスト削減
- ストレージ容量は減ったが、それでも 1~2年分の容量があり、バックアップシ ステムと合わせて問題ない構成にした。
- 極力MLFに計算機を配置しない構成とな り、ハードウェアの故障やリプレイスの 際の作業が簡素化できる。

サーバーの削減効果


BL08

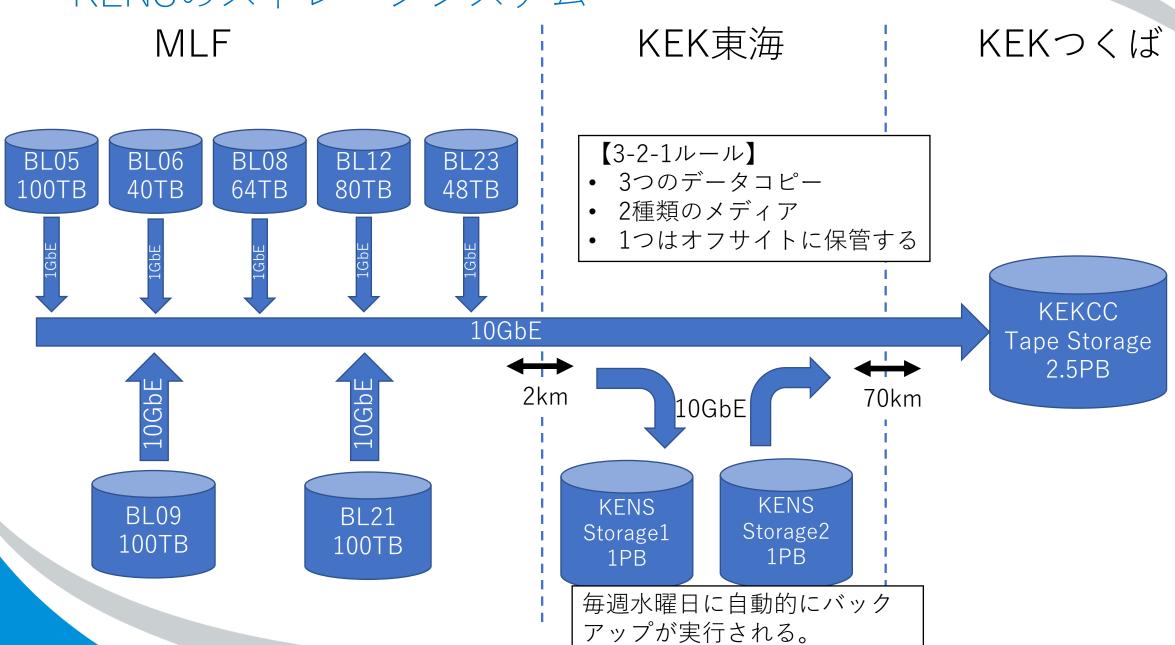
BL08では19インチラックも 撤去したためディスクトップ タイプのT640を選定した。


BL21

上段:Dell PowerEdge R7515 下段:Dell PowerEdge R540

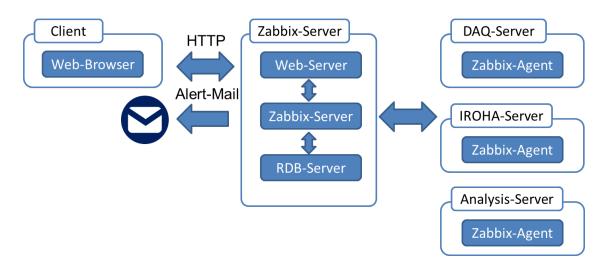
BL23

BL09

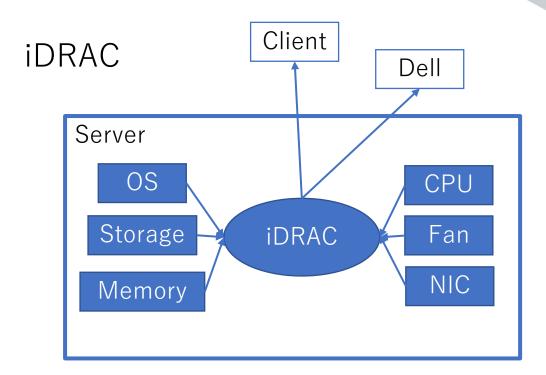


Dell PowerEdge R7515

	2017年以前	2022年
BL08	14	1
BL09	31	1
BL12	8	1
BL21	24	1
BL23	9	1
合計	86	5


- KVMによる仮想化を実施する前は、ビームラインごとに10台~20台程度の物理サーバーを用意し実験環境を整備していたが、仮想化を導入してからは、大幅な物理サーバーの削減が実施できた。
- ・ 導入コストは93%削減された。

KENSのストレージシステム


李後が開発監視システム

Zabbix

- Zabbixは、エージェントソフトをサーバーに インストールしてつかう**監視ソフト**。
- 様々なOSに対応し、ネットワーク機器やUPS にも対応する。
- サーバーのリソースを常に監視し、予め設定 された閾値を超えると、アラートメールを送 信する。

->不具合を見逃さない!

- iDRAC(integrated Dell Remote Access Controller)は、マザーボード上に実装された、 サーバー管理ツール。
- OSに依存せずに独立に動作する。
- サーバーの**健全性**を確認し、異常があればア ラートメールを送信する。
- オプションでリモート操作が可能で、OSのインストール作業から完全リモート操作ができる。

今後の開発

- ●DAQ-MWのバージョンアップ
 - ●RHEL8に対応した**DAQ-MW2.0.0**(プレリリース)のテスト
 - ●DAQ-MW **MLF Component1.6.0**のテスト
 - ●DAQ-MW開発当時は1台の計算機あたりの**リソースが少なかった**ので、並列分散処理はとても良いアイディアだった。しかし現代では1台あたりの計算機で64コア256GBメモリを搭載するようなマシンも入手できる環境である。であれば**マルチスレッド、マルチプロセス化**したDAQソフトでDAQできるのではないか?
 - ●DAQ-MW MLF ComponentのGathererは**CORBA通信のオーバーヘッド**で本来の性能を引き 出すことができていない。1回のコンポーネント間通信でやり取りされるデータが小さいため。 1.6.0では**バッファリング機能**を追加して**オーバーヘッドを削減**した。もしかしたら1.6.0で1台 のDAQ-CPUでDAQできるかも?
 - ●使い勝手が悪くとも、**シンプルで自分たちで責任で運用できる**DAQソフトの開発が必要。

●NeuNETの更新

- ●ハードウエアはSpartan-3EからArtix-7に載せ替えた。合わせてADCも1チップで8chのものに載せ替えた。
- ●HDLコードの刷新が必要。

DAQシステムの式年遷宮

式年遷宮:伊勢神宮の社殿を20年に1度建て替えること

- ●現在のDAQシステムは2008年に開発された。
- ●DAQ-MW NeuNET共に開発者の退職もしくは退職が近い。
- ●式年遷宮のように20年周期で総入れ替えというのは、継続的な開発という意味ではとても良い仕組み。
- ●折しも、RHEL8のサポート期限はMLFファーストビームからちょうど20年。