

計測システム研究会2022 @ J-PARC

ATLAS検出器アップグレードにおける

Outer Barrel モジュール単体試験からOBの組立に向けた試験環境の整備

2022年11月17日~18日

釣希夢(お茶の水女子大学)

On behalf of the ATLAS ITk Pixel group

HL-LHC ATLAS Experiment

- ATLAS実験
 - 標準模型の精密測定
 - 新粒子探索など様々な測定
- 高輝度(High Luminosity) LHC 計画
 - 統計量の増加 → 高放射線耐性
 - 粒子密度の増加 → 高粒度・高速データ転送

計測システム研究会2022@J-PARC

C SERVICE

積分ルミノシティ: 4000 fb-1 衝突事象数/1バンチ交差:200

ATLAS Upgraded Pixel detector

計測システム研究会2022@J-PARC

Feature	現行ピクセル検出器	ITk
Pixel size [µm²]	50 x 250	50 x 50
Number of pixels/chip	26680	153600
Data rate [Gbs]	0.16	5.12

高粒度・高速データ転送・高放射線耐性

を有する検出器

[1] <u>Module development for the ATLAS ITk pixel detector</u>

Production Plan for ITk pixel modules

Layout schematic of active elements in the r-z pro-jection of the ITk Pixel detector

Outer Barrel Pixel Module

Overview of Assembly for Cell Loaded Module

Wire bonding

Cellの写真

計測システム研究会2022@J-PARC

塗布された **Cell**の接着剤

Cell貼り付け後の 接着剤の様子 (ガラスを用いて再現)

Wire bonding protection on the module

6

Overview of QC test after shipping

Reception test

- 非電気的試験: Visual inspection, Metrology, Sensor IV, ASIC VI
- 電気的試験:
 - 各ピクセルの回路試験: Digital/Analog FE test, Threshold/ToT check → p.10~13
 - Bump接続確認試験 → p.17
- Thermal Calibration \rightarrow p.14
 - 正確な温度測定のため、 -各ASICに搭載された温度センサー(NMOS)のキャリブレーションを行う
- Thermal test $\rightarrow p.15 \sim 16$
 - Cellの貼り付け精度を見るために、モジュール温度が均一に分布していることを確認する -
 - ASIC内の温度センサー(NMOS)
 - シリコンセンサーのleakage currentから計算されるシリコンセンサー上の温度
 - モジュール表面の温度

QC system at JAPAN

電気的試験のセットアップ

Electrical test / Source test system at CERN

計測システム研究会2022@J-PARC

11111 36V 34/8A LX/ PL3030MD-P QUAD-MODE DUAL POWER SUPPLY - 10016397 --00

PL303QMD-PAIM-TTI

Digital / Analog Front-End Test

- デジタル回路試験
 - デジタルFEの前に試験用の波形を送り、ASICとの接続確認およびデジタル回路の動作確認を行う。
- アナログ回路試験
 - アナログFEの前に試験用の波形を送り、アナログ回路が動作確認を行う。

計測システム研究会2022@J-PARC

10

Results: Digital / Analog Front-End Test

計測システム研究会2022@J-PARC

Stage1 ···· Before Shipping (Japan) Stage2 … First Reception (CERN) Stage3 ··· After Tab-cutting (CERN)

11

Threshold / Noise / ToT check

- 閾値の確認
 - アナログFEの前に様々な大きさの試験用波形を送り、異な る大きさの波形に対する応答を確認する
 - 波形に対応する電荷量とその時の応答率に対するS字カー -ブのをs(x)の関数でフィッティングする。その時のS字カー ブの中央値は閾値として設定され、幅はピクセルのノイズ の大きさに相当する。
- ToTの確認
 - アナログFEの前に試験用の波形を送り、アナログ信号が閾 値を超えている時間(ToT)の平均値の測定・確認を行う。

time

Results: Threshold / Noise / ToT check

Threshold distribution / Noise evolution / Mean ToT distribution

[diff FE] NoiseDist-0 (Comparison)

計測システム研究会2022@J-PARC

[diff FE] ThresholdDist-0 (Comparison)

Stage1 ···· Before Shipping (Japan) Stage2 … First Reception Stage3 ··· After Tab-cutting

[diff FE] MeanTotDist-0 (Comparison)

Thermal Calibration system at CERN

● ASIC内のNMOSセンサーをキャリブレーションする 温度の関係式のN_fを較正する

$$T[K] = \frac{k_B \times ln15}{N_f} \times V$$

Leakage currentから計算したシリコンセンサーの温度を使用する

$$\frac{I_{on}}{I_{off}} = \left(\frac{T_{on}}{T_{off}}\right)^2 e^{-\frac{E_g(T_{on})}{2kT_{on}} + \frac{E_g(T_{off})}{2kT_{off}}}$$

Toff, Ion/offを測定し、Tonを求める

 $Eg(T) = Eg(0) - \frac{\alpha T^2}{T + \beta}$

 $T_{on/off}$: Module temperature with chip power off/on. Ion/off: Leakage current with chip power off/on.

Toffは恒温曹と温度が平衡状態になるまで待つので、恒温曹内の空間温度をそのまま使用

計測システム研究会2022@J-PARC

$E_g(0) = 1.17 \ eV, \alpha = 4.73 \times 10^{-4} \ eV/K, \beta = 636K$

TA-5000A with Thermal Test Enclosure

2410 Keithley Sourcemeter

14

Thermal Test system at CERN

- Cell loadingの貼り付け精度は外観から判断することができないため、 モジュールの様々な点における温度測定から判断する必要がある
- モジュール上の測定点:
 - Flex PCBの温度 (PCB上のNTC)
 - シリコンセンサー温度 (Leakage currentから計算)
 - ASICの温度(NMOSセンサーを使用)
 - モジュール表面の温度 (Thermal Camera) _
- 測定温度:
 - モジュールを載せているjigの温度を10C, 20C, -10C に変えて測定

計測システム研究会2022@J-PARC

After Cell loading

https://www.flir.jp/support/products/e75

https://www.digitec.ch/en/s1/product/kis-scuba-80-I-storage-boxes-8989409

Results: Thermal Test after calibration

- モジュール毎のNTC温度のばらつき
- NTC温度と以下3点の温度の相関性を確認する
 - シリコンセンサー温度 (Leakage currentから計算)
 - ASICの温度(NMOSセンサーを使用)
 - モジュール表面の温度 (Thermal CameraでNTCがある部分を測定)

CERNQ11

計測システム研究会2022@J-PARC

NTC温度と3点の相関性が確認でき、異常に温度が高い点は見受けられない

Thermal cameraで測定した点:

物体が放出した赤外線を測定。物質によって放射率が異なるため、素材による補正が必要。 現在はモジュール表面を手動で温度を取得しているため、測定点に多少のばらつきがある。 今後は、測定を画像識別にし、正確な点を測定。測定された点の物質で補正する予定。

16

Bump failure test

- Sourceを用いたバンプ接合確認試験 (Source test)
 - 荷電粒子から生成された信号を直接読み出す
 - PCB上のSMDや、コネクターの上ではヒットの収集効率 が落ちる。
 - Sourceを使用できる環境を整える必要がある

計測システム研究会2022@J-PARC

- センサー内のクロストークを利用したバンプ接合確認試験 (**Disconnected bump test**)
 - センサーのクロストークがないピクセルを特定する
 - PCB上の部品に関係なく試験を行える
 - アナログ回路試験と同様の最もシンプルな電気的試験環 境で試験が行える
 - ただし、隣接する4つのピクセルを使用するため、エッジ の部分のEfficiencyが悪くなる

Disconnected bump scanがSource testの結果を再現するか知る必要がある

Disconnected bump scan

Disconnected bump scanを使用する場合

Row

- 試験用パルスを注入するために隣接する4つのピクセルを使用するため _ 端1ピクセルのEfficiencyが悪くなる
- Source testとの比較には端1ピクセルを除いた内側のピクセルだけを用いる -

0x1388e_OccupancyMap

100 <u>s</u> 90 30 20 10

Compare 2 scans to verify bump failure (bump disconnection chip)

Distribution of number of pixels:

Disconnected bump scanは良くSource scanの結果を再現しており、Sourceを用いないバンプ接合確認試験を確立できている

19

Parallelization of QC test system

OUNCERN

今後のMass Productionに向けて4モジュール同時に試験できる環境をCERN, Japan両サイトで整備中

計測システム研究会2022@J-PARC

Japan

Hayashi-REPIC

Conclusion

- れる。
 - このアップグレードのために日本では2,200台のモジュールを量産予定(そのうちOB用は1,350台)
- 組み立てられた検出器はインストールを行うサイトに集められ、QC試験にかけられる
 - 試験用モジュール数十台を各サイトから集められ、CERNで試験を行った(日本からは8台) -
 - 組立サイトで行った試験とインストールサイトで行われた試験で一貫性のある結果を取得し、 -同様の試験環境が整っていることが確認できた。
- 今後のモジュール量産に向けて
 - 4モジュールを同時に試験できる環境を、組立サイト・インストールサイトで整えていく。

計測システム研究会2022@J-PARC

● HL-LHC計画に伴いATLAS検出器の最内層に位置するInner Tracker Systemは新しくITkと呼ばれる検出器にアップグレードさ

Outer Barrel Pixel Module: Cell

● Cellの構造

Outer Barrel Pixel Module: Wire bonding protection

ModuleのWireの上をケーブルが通るため、Wireを保護する必要がある

Outer Barrel Pixel Module: Cooling Performance

● 冷却性能評価: TFM手法(Thermal Figure of Merit)

計測システム研究会2022@J-PARC

T_{heater} :ヒーター裏面の温度 T_{coolant} : 冷却液の温度 Q :ヒーターの電力密度 [W/cm²]

運転時の最大発熱量: 0.7 W/cm^2

発熱量が一定の場合、TFMが小さいほど温度差が小さくなる。

十分な冷却性能を有する

詳細は日本物理学会 2022年秋季大会 7aA421-6 で報告

Outer Barrel Pixel Module: Assembly of Cell

- ステンシル法
 - ステンシルスペーサーで金属マスクのパターンに接着剤を塗布
 - 治具のスペーサーの厚みで、接着剤の厚みを調整可能

計測システム研究会2022@J-PARC

詳細は日本物理学会 2022年秋季大会 7aA421-6 で報告

Digital / Analog Front-End Test

Parallelization of QC test system at CERN

Environmental Monitoring

- モジュール上の温度 (NTC)
- 環境の温度・湿度・露天
- HV / LV モニタリング
- Leakage Current

Results: Thermal Test after calibration

● NTC温度と以下3点の温度の相関性を確認する

- シリコンセンサー温度 (Leakage currentから計算)
- ASICの温度(NMOSセンサーを使用) -

計測システム研究会2022@J-PARC

ル表面の温度 (Thermal CameraでNTCがある部分を測定) ← Wire bonding protectionがあるため測定不可

ASICの中のセンサー温度とシリコンセンサー温度はよく一致している Thermal CalibrationはCell loading後に行う方が良い

NTC temperature of variety module LV off

Module NTC of each Jig temperature

Thermal Camera

Before Cell loading

After Cell loading

32.5

9.6

計測システム研究会2022@J-PARC

Jig 20.5°C, NTC 25.5°C

Jig 10.8°C, NTC 15.9°C

Setup for Thermal test and Calibration

Cell用のJig

計測システム研究会2022@J-PARC

<u>HIH4000</u>

