ヘッド分離型SXエリア検出器の開発

✓ 放射光施設の状況とエリア検出器の歴史
 ✓ ヘッド分離型SXエリア検出器開発の目的
 ✓ ヘッド分離型SXエリア検出器の設計と性能
 ✓ まとめと今後の予定

物質構造科学研究所 放射光実験施設 基盤技術部門 五十嵐教之

計測システム研究会@2022/11/18

放射光施設の状況

回折限界光放射光施設の整備(特に軟x線領域)

⇒高輝度光やコヒーレンス光利用の躍進⇒**エリア検出器の必要性!**

1980年代

1990年代

2000年代

一方、SX用エリア検出機は、

真空駆動、低波高シグナル、ノイズ などの問題により、

CCD検出器の独壇場だった

CCDの例: Teledyne Princeton Instruments, PI-MTE3 (https://www.princetoninstruments.com/products/pi-mte-family)

東北大一理研で共同開発中のsxCMOS (H. Shikt, et al., IEEE trans. electron devices., 68, 2056 (2021).)

フォトンファクトリーR&Dビームラインと将来光源施設の提案

Hybridリング

2種類のビームを共存させ、選択利用と同時利用が可能な新概念の放射光リング。新放射光源の候補。 超高性能のシングルパスビームと高性能・汎用のストレージビームを利用したマルチビーム利用実験 を展開する。

R&Dビームラインでの測定手法R&Dの例

<u>共鳴軟X線散乱計測R&D</u>

- ・1~数100nmのメゾスコピック領域の構造解析に適切(磁性体やソフトマター)
- ・3d遷移金属元素のL吸収端があり、3d軌道の価電子状態を直接観測可能
- ・共鳴 X 線散乱は電荷や軌道,スピン等の電子の自由度の空間秩序構造を観測可能
- ・一方、幅広い散乱角度(20=1~60°程度)を計測する必要がある

真空内に検出器を設置、かつ読み込み速度が早い可動型の小型検出器が必要!

R&Dビームラインで必要なエリア検出器

 2ビーム同時利用計測を含む、多様な測定手法のR&Dに利用
 ⇒配置の自由度、高速駆動性能、高い検出効率、高い放射線耐性、 拡張性の高い制御システム、各種トリガー駆動、等

硬X線用の検出器では大気圧測定が主体なので自由度が高く、 EIGERやCITIUS検出器等の高性能検出器が利用可能。軟X線~テ ンダーX線では真空雰囲気前提だが、フランジ固定型のみ利用 可能で、真空中で自由度の高い高性能な小型検出器は無い

軟X線用のヘッド分離型高性能エリア検出器の開発

Gpixel社製CMOS検出器GSENSEシリーズ 兵庫県立大の寺西、原田らのグループが軟X線用に改良(-SP3) GSENSE400BSI-SP3の主な性能(T. Harada, et al., Appl. Phys. Exp. 13, 016502 (2020).) ○十分な面積と画素サイズ、高速駆動性能かつコンパクト

Specification and measured characteristics of the newly developed Table I. CMOS sensor.

Scheme	Backside illumination (BSI), high dynamic	
	range (HDR), and rolling shutter	
Pixel number	2048 (H) \times 2048 (V) pixels	
Pixel size	$11 \times 11 \ \mu m^2$	
Photon-sensitive area	$22.5 \times 22.5 \text{ mm}^2$	
ADC (analog-to-digital con-	12 bit	
version) digit		
Readout noise	$2.6 e^{-} rms$	
Dark current	300 e ⁻ /pixel/s @ 31 °C	
Operation mode, frame rate	Standard (high gain or low gain) 48 fps,	https://www.gpixel.com/products/area-so
	HDR 24 fps	gsense/gsense400bsi-11-%ce%bcm-4mp-r

an-en/ ollingshutter-image-sensor/

*開発する検出器ではペリチェ冷却を実装し、暗電流を低減する

Gpixel社製CMOS検出器GSENSEシリーズ

<u>GSENSE400BSI-SP3の主な性能(T. Harada, et al., Appl. Phys. Exp. 13, 016502 (2020).)</u>

○1keVまでほぼ100%の検出効率

○広範囲の高いエネルギー分解能

Gpixel社製CMOS検出器GSENSEシリーズ

<u>GSENSE400BSI-SP3の主な性能(T. Harada, et al., Appl. Phys. Exp. 13, 016502 (2020).)</u>

○高い放射線耐性(このグラフは<u>室温</u>での測定)

*ペリチェ冷却を実装し、より高エネルギー領域での高放射線耐性化

Gpixel社製CMOS検出器GSENSEシリーズ

 この開発を開始後、GSENSE検出素子*を利用したカメラが 各社(Andor Technology、Sydor Technologies、Axis Photoniqueなど)から続々とリリース。ただし、いずれも フランジ固定型(Axis Photonique社は最近真空内で可動可 能なものを作ったが、筐体ごとなので大型!)

https://andor.oxinst.com/products/cameras-forx-ray-euv-electron-and-neutron-detection

https://sydortechnologies.com/ direct-detectors/sydor-wraith/

https://www.axis-photon.com/streakcamera/axis-sxr-soft-x-ray-scmos-camera/

* Gpixel社によると、-PSシリーズが-SP3の製品版との説明 ⇒評価実験の結果参照

開発中のヘッド分離型SXエリア検出器

- 80~1000 eVのエネルギー領域
- USB3.0インターフェイス
- ペルチエ冷却器内蔵
- RS(Rolling Shutter)STD_HGモード、STD_LGモード、WDR モード等、用途に応じてモードを切り替えて使用

これまでの開発状況と今後の予定

2021年

10月 発注作業~各種詳細仕様、カメラ検査項目の詰め 2022年

- 3月 オフラインでのカメラ動作テスト~各種改良
- 7月19日 SX照射性能評価実験@NewSUBARU BL-10
- 8月18日 実験結果を受けて打ち合わせ
- 8月26日 上記打ち合わせや外部トリガーに関する計測結

果を反映した最終仕様の確定

9月13日 制御デモ機をPFで受け取り

~STARS制御システム開発開始

12月15日 性能評価の残りを実験予定@NewSUBARU BL-10 2023年

3月 評価用チェンバー完成~PFでの評価実験、R&D実験

- ・画像は問題無く取得できた、温調も-27度まで十分に下げられる(-50度設定@チラー15度)
- ・論文報告のデータを全部取得できた訳では無い、できれば秋に評価したい(特に放射線耐性)
- ・詳細結果は次スライド以降

<最終仕様書>

○フレームレートを16bit時の実測値(32fps)に修正

*素子本体のフレームレートは48fpsだが16bit転送のため時間が余分にかかる (USB3.0の帯域ギリギリ、カメラリンクならもう少し改良されるが必要無し)

フレームレート 12bit (16bit 転送)				
標準モード、フル解像度	Max 32 fps			
標準モード、 2048x1024	Max 64 fps			
HDR モード、フル解像度	Max 16 fps			
シャッター速度	20.68[μ秒]~1000 秒(バルブモード)			

○各種トリガーモードの実測値を計測し、数値や図を仕様書へ反映
 実装したトリガーモードについては次スライド以降参照(標準トリガーモード、
 数フレーム連続トリガーモード、外部制御トリガーモード)

外部 IO No.	信号名	I/O	機能
1	TRIG_VALID	OUT	トリガー信号入力可能
2	EXPOSURE	OUT	露光中
3	TRIG_START	IN	トリガー撮影開始

○その他、図や記述の間違いなどを修正

8.2 スペシャルトリガーモード1 (数フレーム連続トリガーモード)

*標準トリガーモード、スペシャルトリガーモード1は1µsec以下のジッター

<7月19日の評価実験の結果と今後の予定>

○ゲインとノイズの実測

*1000 eVのシングルフォトンのDN値は117~(1 DN = 2.34 e-)

⇒測定時のゲインが不明、ゲインとノイズの関係を再見積もりする予定

〇シングルイベントの計測

- 1ピクセルに収まるシングルイベントの割合が低かった
- * LSF(Line Spread Function)が大きくなっていると思われる 発生した電荷が広がってしまっている?
- *エネルギー分解をするには1ピクセルに収まった方が都合が良いが、散乱実 験とかであれば大きな問題にはならないだろう
- ⇒論文の検出素子と構造が異なることで説明できる Gpixel社には報告して、改良可能なら改良してもらう (多くの計測では問題無いため、優先順位は低い)

<u>○量子効率QEの実測</u>

- *100eV以下での落ち込みが大きく、SBSAセンサ並の性能となっている 入射面の不感層がSP3(論文のもの)に比べて厚くなっていると思われる
- ⇒ Gpixel社には報告して、改良可能なら改良してもらう(優先順位は高いが、 中国ではプロセス装置が手に入らないので時間はかかりそう)

○放射線照射耐性

 *100eVで10分ほど照射した後の暗電流上昇を評価(端の方を使う)
 -26.8℃冷却だが400e-/sほど上昇、冷却の効果をもう少し期待したが、、
 ⇒今回は時間の関係で1点しか測定できず。12/15に再調査して、どの程度 までなら影響が無いか、回復するか等を詳細に確認する予定 真空度に関しても10⁻⁵Paでの駆動について確認する予定

まとめ

- 軟X線領域の多様な測定手法R&Dに活用できる、真空雰囲気でのヘッド分離型エリア検出器を、Gpixel社のCMOS素子(GSENSE400BSI-PS)

 を用いて開発した
- NewSUBARU BL-10で性能評価試験を実施し、ペルチェ冷却で-27°で 安定駆動できること、元々のプロトタイプ(-SP3)と比べて500eV以下の領域で量子効率が下がること及びLSF性能が悪くなっていることを確認したが、その他の基本性能や駆動性能はほぼ満足していることを確認した。
- -27°まで冷却することで、1000eVでの放射線照射耐性が上がっていることは確認できたが、事前の予想よりも耐性が悪いように見える。要追加調査。
- ビームライン制御システムに組み込むための検出器制御クライアン
 トの開発を開始
- •12/15の追加実験で基本性能確認の残りを実施し、来年からPFでの性能確認、実際のR&D測定などを進める予定。