ATLAS実験シリコンストリップ検出器 Run 2運転までのまとめと Run 3運転の状況

2022/11/17 OpenIt 計測システム研究会2022 廣瀬茂輝(筑波大)

On behalf of ATLAS SCT Group

ATLAS SemiConductor Tracker (SCT)

- SCT: ATLAS内部飛跡検出器を構成する検出器の一つ
 - シリコンピクセル検出器の外側に配置
 - 全4088個のシリコンストリップモジュールで構成(合計628万ストリップ)
 - バレル部4層、エンドキャップ部9ディスク×両サイド
- Run 1開始(2010)から運用
 - Run 3 (2022-2025) で運用を終了し、ITk (Inner Tracker) に置き換え予定

■ SCT DAQの概要

- シリコンモジュール(4088個)
 - センサー(p^+ -on-n、768ストリップ) × 両面 (40 mradのステレオ角)
 - 6個×両面のABCD3TAチップで信号処理 → 2本のオプティカルケーブル で後段回路(ROD/BOC)にデータを送信
- ROD(128枚)
 - 約32モジュールからのデータをシリアライズして中央DAQに送る

■ Run 2運転での挑戦

- LHC Run 2の実験環境はとても大変だった
 - 想定の2倍のルミノシティー → データをロスなく取るためのDAQ改善
 - 激しい放射線損傷:漏れ電流はRun 2当初の10倍以上に

→ 状況に応じた運転パラメーターの調整が必要となった

同時に、実験環境で放射線損傷を受けた巨大シリコン検出器
 システムとしても興味深い研究対象

Run 2運転まとめ論文: JINST 17 (2022) P01013

■ 高ルミノシティ環境への対応

- Run 1 DAQのままでは高ルミノシティ運転に耐えられなかった
 - RODを90 → 128に増強
 - 各RODの負荷が均一になるよう、RODと モジュールの対応を最適化

■ さらなる安定運転のための改善

・ RODビジー発生時の処理の自動化

Strip number

- ビジーを自動検出し、RODをDAQから除外→復旧→再組み込み(約18秒)
 復旧直後に再度ビジーを出したら2回目の復旧手順(約70秒)
- SEUによるエラーチップやノイジーチップの処理
 - 90分ごとにコンフィギュレーションを書き直す(ロス時間は1.2秒/回)
 - 特にノイジーなモジュールを自動検出、再コンフィギュレーション

<u>高ルミノシティー下でも安定したDAQを実現した</u>

■荷電粒子検出効率

・ 先頭バンチで>99%、全バンチで>97%の検出効率
 <u>Run 2最後まで高い検出効率を維持できていた</u>

- 定期的なキャリブレーションの中で 測定可能
 - 入力電荷2 fCにおける閾値スキャン
 結果を利用
 - 誤差関数をフィット → σを得る
 ノイズ = σ / (G × e)
 (e:素電荷、G:アンプゲイン)
- Run 1運転から定期的にノイズ測定を 行ってきた
 - この間、ノイズの増加は10%程度
 - 運用上の閾値は1 fC = 6250 e⁻
 → まったく問題ない!

8/18

■ 放射線損傷

- Run 2運転終了時点での総放射線量は最大5.7×10¹³ n_{eq}/cm²
 カロリメーターなどで生成された中性子が多い
- 現在のSCTの放射線損傷の理解は、Run 3を走りきる上で 重要となる
 - 漏れ電流
 → これらが、SCT運転および性能上の
 完全空乏化電圧 ∫ 重要パラメータ

■ 漏れ電流

Run 1開始以来、すべてのモジュールの漏れ電流をほぼ
 常時監視してきた

- 漏れ電流はRun 2の間に約10倍に増加

- 電流量とその変化は、ハンブルクモデルとよく一致
 - 漏れ電流はよく理解できている

■ 完全空乏化電圧(V_{FD})

*I-V*曲線を使ってV_{FD}を見積もる

p⁺-on-*nセンサーのf*: 型変換が見えている

- $I_{\text{leak}} \propto \sqrt{V_{\text{bias}}}$ なので、 $I \sqrt{V}$ に対して2つの直線をフィット $\rightarrow 2$ 直線の交点を V_{FD} と定義する
- *I-V*測定は、検出器の特性確認のため通常年に数回行う
- V_{FD}測定値とその変化はハンブルクモデルと~30%程度で一致
 完全空乏化電圧もよく理解できている

■ Run 2運転のまとめ

• Run 2運転期間を通し、99%以上のデータ収集効率を達成

DAQ効率	99.9%
Data Quality効率	99.85%

DAQ効率: ATLASデータ収集中のSCT稼働率 Data Quality効率: ATLASが収集したデータのうち、SCTのデータ品質が基準を満たした割合

Run 2終了時点で、検出器全体の98.6%が正常に稼働

– Run 1終了時点からの減少は1%未満

Component	Barrel		Endcaps		SCT		Fraction [%]	
Modules	12	(11)	30	(19)	42	(30)	1.0	(0.73)
Chips	55	(38)	22	(17)	77	(55)	0.16	(0.11)
Strips	6398	(4111)	9505	(7252)	15903	(11363)	0.25	(0.18)

()内の数値はRun 1終了時点のもの

JINST 17 (2022) P01013

Run 2のシビアな実験環境でも、安定したSCT運転を実現できた

Run 3運転に向けた準備

SCT運用終了 (ITkIこ入れ替え)

そのために定期的にSCTを動かし

ていたことがスムーズなRun 3 立ち上げにつながった(と思う)

- ・ 実験コンディションはRun 2とほぼ同じ
 - SCT DAQに対する大きな変更の必要はない
- シャットダウン期間中に行った準備
 - 放射線損傷がさらに酷くなるの中での運転への準備が重要
 - ・ シャットダウン中の定期的な性能測定による検出器状態の確認
 - ・ より詳細な性能モニタリングツールなどの準備
 - 検出器キャリブレーション用アルゴリズムの信頼性向上 (実はRun 1の時からまったく変更されていなかった)

■ 性能モニタリングツール

→しかし、4088個のモジュールをすべて毎日チェックするのは大変

- 個別のモジュールの性能を一覧できるツールを開発
 - 検出効率など、さまざまなパラメータをモジュール別に表示
 - 性能が悪いモジュールを一目で発見、調整が可能に <u>SCT-2022-002</u>

	Page: Efficiency • Project: data22_13p6TeV •		Runs (Range): 436169 to 436496		 No selection Serial Number Module Index PS Index 	ATLAS SCT Preliminary √s = 13.6 TeV ₩0			
検出効率が	Module \ Run	436496 (1524126 events) 2022-10-09 15:45:06	436422 (1184756 events) 2022-10-08 10:14:31	436377 (468776 events) 2022-10-07 23:52:22	436354 (794942 events) 2022-10-07 15:36:44	436195 (127077 events) 2022-10-06 09:05:22	436182 (19300 events) 2022-10-06 04:18:09	436169 (196180 events) 2022-10-05 17:47:44	
悪い 	Serial: 20220330200319 BEC: 0 Layer: 0 Eta: 6 Phi: 2 P5: 2423 Crate: 3 Slot: 16 Channel: 29	Efficiency: 0.0439 Hit Map Noise Map Effiside0 Effiside1 0.0 Bad Dead 0 3 6	Efficiency: 0.4183 Hit Map Noise Map Effiside0 Effiside1 0.0 Bad Dead 0 3 6	Efficiency: 0.3488 Hit Map Noise Map Effside0 0.0 Effside1 0.6576 Noisy Bad Dead 1 3 6	Efficiency: 0.2597 Hit Map Noise Map Effiside1 0.0 0.5193 Noisy Bad Dead 8 3 6	Efficiency: 0.4876 Hitt Map Noise Map Effiside0 Effiside1 0 Bad Dead 0 3 6	Efficiency: 0.4935 Hit Map Noise Map Effiside0 0.0 Bage Bad 0 Bad	Efficiency: 0.3853 titt Map Noise Map Effside0 Effside1 0.0 0.7705 Noisy Bad Dead 0 3 6	
	Serial: 20220330200394 BEC: 0 Layer: 0 Eta: 1 Phi: 3 PS: 2430 Crate: 3 Crate: 3 Slot: 16 Channel: 30 Slot: 16	Efficiency: 0.1486 Hit Map Noise Map Effside0 Effside1 0.112 0.1561 Noisy Bad Dead 0 18 3	Efficiency: 0.4426 Hit Map Noise Map Effside0 Effside1 0.4467 0.4386 Noisy Bad Dead 61 18 3	Efficiency: 0.5209 Hit Map Noise Map Effside0 Effside1 0.524 0.5179 Noisy Bad Dead 0 18 3	Efficiency: 0.9436 Hit Map Noise Map Effside0 Effside1 0.9451 0.9421 Noisy Bad Dead 0 18 3	Efficiency: 0.9718 Hit Map Noise Map Effside0 Effside1 0.9731 0.9705 Noisy Bad Dead 0 18 3	Efficiency: 0.9944 Hit Map Noise Map Effside0 Effside1 0.9961 0.9926 Noisy Bad Dead 0 18 3	Efficiency: 0.6834 Hit Map Noise Map Effside0 Effside1 0.689 0.6778 Noisy Bad Dead 2 18 3	
	Serial: 20220270300212 BEC: 2 Layer: 2 Eta: 1 Phi: 2 PS: 3535	Efficiency: 0.1635 Hit Map Noise Map Effside0 Effside1 0.1628 0.1642	Efficiency: 0.9724 Hit Map Noise Map Effside0 Effside1 0.9746 0.9702	Efficiency: 0.9798 Hit Map Noise Map Effside0 Effside1 0.9796 0.9801	Efficiency: 0.9729 Hit Map Noise Map Effside0 Effside1 0.9721 0.9737	Efficiency: 0.9732 Hit Map Noise Map Effside0 Effside1 0.975 0.9714	Efficiency: 0.9937 Hit Map Noise Map Effiside0 Effiside1 0.9947 0.9927	Efficiency: 0.97 Hit Map Noise Map Effside0 Effside1 0.9684 0.9715	
良い	Crate: 6 Slot: 21 Channel: 14	Noisy Bad Dead 0 0 9	Noisy Bad Dead O O 9	Noisy Bad Dead 0 0 9	Noisy Bad Dead 1 0 9	Noisy Bad Dead O O 9	Noisy Bad Dead O O 9	Noisy Bad Dead 0 0 9	

■ Run 3運転の状況 (1)

- Run 3データ収集を今年7月5日に開始
 - すでに30 fb⁻¹以上のデータを蓄積 → 今年の目標に到達した
 - 今月28日で2022年のデータ収集を終了する予定
- SCTも順調に稼働している
 - 開始直後のランから>99%の検出効率を確認

■ Run 3運転の状況 (2)

- 特定のランで断続的にエラーを出すモジュールがある
 - Run 2の時には見られなかった現象
 - ある特定のRODにつながったモジュールで起きる
 - 全体の0.3%程度なのでデータ品質には影響ないが、原因を理解して おきたいSCT DAQの問題

■ Run 3運転の最後まで

<u>いずれも問題なさそう</u>

- ただし、検出効率 > 99%を維持するための電圧はもっと高い
 - より現実的なシリコンセンサー特性を踏まえた予想を、TCADシミュレー ションを用いて検証中

■ まとめ

- SCTは、2010年のRun 1運転開始から、10年以上にわたって 安定して運転されてきた
- Run 2運転では、ルミノシティーが想定の2倍に
 - DAQの改善により、Run 2を通じたデッドタイムを0.1%程度に抑えた
 - と同時に、高い検出効率と低いノイズを維持できていた
- 放射線損傷の理解
 - Run 1以降10年近くにわたる漏れ電流や完全空乏化電圧の変化を 解析 → Run 3終了まで、安全なSCT運転を期待
- Run 3運転がいよいよ開始!
 - 立ち上げ直後から、SCTは安定して稼働している

■ より正確なDAQダイアグラム

- RODでデータをフォーマット → Sリンクから中央DAQに送る
- BOC: Back-Of-Crate
 - RODの裏に取り付けられている
 - オプティカルケーブルとRODをインターフェースするボード

22/18

- SCT用の読み出しチップ
 - 128チャンネルのamp, shaper, discriminator
 - バイナリ読み出し

・ノイズ

■ ノイズ

- Average chip ENC: Sカーブ測定から見積もったノイズ
- Average chip noise occupancy: ノイズ占有率測定から見積 もったノイズ
 - 閾値1 fCでのランダムトリガー測定

(本来のIV測定の目的からは必要ないが)なんどか 350 Vまで上げた

