

COMET Phase-I 実験に向けた ニューラルネットワークを実装したFPGAによる オンライン事象選別の研究

宮滝 雅己А

m-miyataki@epp.phys.sci.osaka-u.ac.jp

藤井祐樹^B、中沢遊^C、吉田学立^D、上野一樹^{A,C} MyeongJae Lee^E、青木正治^A

阪大理^A、Monash Univ.^B、KEK素核研^C、阪大RCNP^D、成均館大^E

2022/10/17 計測システム研究会@J-PARC

- ・COMET Phase-I 実験@J-PARC
- 研究動機
- ・トリガーアルゴリズム
- ・Neural Network実機試験
- ・まとめ

ミューオン電子転換過程

ミューオンがニュートリノを放出せずに電子へ 転換する荷電レプトンフレーバー非保存過程

信号事象

- $\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)$
- ・電子は単色エネルギー
- ・AIの場合、105 MeV/c

背景事象

- $\mu^- \to e^- + \nu_\mu + \bar{\nu_e}$
- 信号事象の分岐比
 - ・標準模型 + ニュートリノ振動 O(10⁻⁵⁴)
 - ・標準模型を超えた物理 O(10⁻¹⁵~10⁻¹⁷)

COMET実験はミューオン電子転換過程を探索

%https://doi.org/10.1140/epjc/s2006-02582-x

円筒型検出器

+ <u>ドリフトチェンバー</u>

CDC (Cylindrical Drift Chamber)

- ・外径 ~1.7 m、内径 ~1 m、長さ ~1.5 m
- ・粒子の運動量を測定
 - 4986 sense wires
 - 20 stereo layers x ~250 cells
- + <u>トリガーホドスコープ</u> CTH (Cylindrical Trigger Hodoscope)
 - ・電子の時間情報を測定
 - ・4重コインシデンスにより偶発的な フェイクトリガー事象を除去

FPGAベースオンライントリガーシステム⁶

- トリガー要求性能を達成 <u>https://doi.org/10.1109/tns.2021.3084624</u>
 - 96 %の信号電子保持効率でトリガーレート13 kHz

(CTHのトリガーレートは91 kHz、DAQの要求は26 kHz)

Latency: 3.2 µs (要求は7.5 µs)

トリガー効率を上げ測定時間窓を広げ、 シグナルアクセプタンスを向上させたい

7

現在のトリガーシステムは500 ns開始ではトリガーレートが13 kHzを超える

現在のトリガーアルゴリズム = 機械学習によるヒット分類 + <u>カットベースのイベント分類</u> **開発アルゴリズム**

= 機械学習によるヒット分類 + <u>Neural Networkのイベント分類</u>

新たなトリガーアルゴリズムの開発

開発アルゴリズム

= 機械学習によるヒット分類 + <u>Neural Networkのパターン認識によるイベント分類</u>

Score mapをNeural Networkの入力に用いることで、
イベント分類に信号電子が描く軌跡のパターン認識を導入

問題設定とハードウェア制約を簡略化し、まず以下の3つを確認したい

- ・ソフトウェア、FPGAファームウェア両サイドの開発スキーム
- 実機FPGA上のNeural Networkの性能
- ・実機FPGA上でNeural Networkの推論にかかるlatency

簡略化した設定でソフトウェア、FPGAファームウェアの開発を行った

hls4mlは目標FPGAに対し実装に必要なlatencyとリソース使用率をレポートしてくれる

FPGA : AMD Xilinx Kintex-7 xck355t-ffg901-1

	Usage (%)						
Latency @200 MHz	BRAM	DSP	FF	LUT			
130 ns 👍	~0 👍	~0 👍	5	32 👍			

hls4mlで作成したQMLP moduleをsimulationで確認後、実機で試験を行った

QMLP module simulation

Xilinx vivado simulationによりQMLP moduleのlatencyと出力を確認

信号イベント情報を入力した時のwaveform

latency, score出力予想通り😎

12

Input event

QMLP module実機試験に向けたfirmware開発 COTTRI FE¹³

実機試験

- COTTRI FE,MB実機を用いて試験を行った
- 入力情報はFEにUDP通信で書き込んだ。
- 出力はVivado ILA debug coreで確認した。

Input event

期待通りFWが動いてることを確認♥

ILA : COTTRI MB

COTTRI MB

QMLP Classification

COTTRI FE

data

Compressed (

QMLPのFPGA実機出力をSignal eventとBG eventの50 eventづつ確認

hls4ml (software)と、FPGA実機(hardware)の predictionが完全に一致

まとめ

- ・COMET実験は標準理論で強く抑制されているµ-e転換過程探索実験
- ・COMET Phase-I 開始に向けて鋭意準備中
 - ・目標感度~7×10⁻¹⁵ @90 C.L. (AI) ->現在の制限を100倍更新
- ・シグナルアクセプタンス向上のためにイベント分類Neural Networkをオンライントリガーシステム に実装するスタディが進行中
- ・問題設定を簡略化することで以下を確認
 - ・Software、FPGA firmware両サイドの開発スキームを開発
 - ・データセットの用意、モデル構築、hls4mlによるRTL作成、VivadoによるSimulation, Neural Network module試験用ファームウェアの開発、FPGA実機出力とSoftware出力の比較

17

- ・FPGA上でのNeural Networkの性能を評価
 - ・hls4ml(software)のpredictionとFPGA実機(hardware)のpredictionが一致することを確認
 - ← 実機でのlatency 測定する

問題設定、ハードウェア設定を現実のセットアップにスケールアップしていく

MBのリソースはまだ余裕があるのでよりdeepなNeural networkやCNN,GNN等を試す

Backup

Online trigger system

- RECBEs generate the 2 bit dE/dx information and send it @10 MHz
- COTTRI CDC system
 - FE : hit classification based on local/neighboring features.
 - Convert 2 bit data to GBDT scores in 400 ns integration time window
 - MB : event classification with the global feature.
 - Sums up the GBDT scores and makes the CDC trigger decision @10 MHz

Trigger algorithm

The current CDC trigger algorithm

- 1. Set the CDC active section for each segment of CTH
- 2. Within each active section, count hits that exceed the score threshold
- 3. CDC trigger is issued when the count exceeds the threshold.

New CDC trigger algorithm under development

- 1. Set the CDC active section for each segment of CTH
- 2'. Execute Neural Network inference w/ score information of each active section as inputs
- 3'. CDC Trigger is issued based on <u>Neural Network classification</u>.

Signal and BG hits

Signal-hit characteristics

- Contained helical tracks
- Single hit in the same wire
- MIP-level energy loss

Background-hit characteristics

- Low energy electrons
 - Interaction of gamma rays at the CDC walls
 - Helical trajectory contained in the same cell
 - Multi hits in the same wire
- Protons (from muon nuclear capture)
 - Momentum higher than 100MeV/c
 - Large energy loss
 - ~40 protons/beam-pulse

Hit classification

*GBDT = Gradient Boosted Decision Tree

Machine learning algorithm (GBDT*) to score hit information for

each wire based on energy loss and local patterns

	CDC config	BG hit 占有率	ワイヤーヒット score情報	Active section	
現実	20 layer x ~250 cell	~20 %	6 bit	~1500 ch	
本スタディ	18 layer x 180 cell	5%	1 bit	960 ch	

High level synthesis for machine learning ²⁷

Fast inference of deep neural networks in FPGAs for particle physics Fig1.

https://dx.doi.org/10.1088/1748-0221/13/07/P07027

FPGA programing Flow

ハードウェア制約

220 mm

信号電子が軌跡を残すのは CDCの約1/3領域

Firmware

COTTRI Front-Enel

Firmware

COTTRI Front-End

COTTRI FE to COTTRI MB data format

- 32
- Maximum data transfer = 2.4 Gbps/lane x 2lane x 0.8 = 3.84 Gbps
- Data format : 1 header & 10 data packets

1 frame @ 10 MHz

Bit	31	30 29 28 27 26 25	24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
Header	0	Parity bits	1	Sent number	Board ID
Score	0	Parity bits	0	RECBE 9	
	0	Parity bits	0	RECBE 8	
	0	Parity bits	0	RECBE 7	
	0	Parity bits	0	RECBE 6	
	0	Parity bits	0	RECBE 5	
	0	Parity bits	0	RECBE 4	
	0	Parity bits	0	RECBE 3	
	0	Parity bits	0	RECBE 2	
	0	Parity bits	0	RECBE 1	
	0	Parity bits	0	RECBE 0	

COTTRI FE to COTTRI MB data format For the preliminary study

33

1 frame @ 10 MHz

Bit	31	30 29 28 27 26 25	24	23 22 21 20 19 18	17 16 15 14 13 12	11 10 9 8	7 6	5 4 3 2 1 0	
Header	0	Parity bits	1	Sent number			Board ID		
Score	0	Parity bits	0	Input39	Input38	Input3	87	Input36	
	0	Parity bits	0	Input35	Input34	Input3	3	Input32	
	0	Parity bits	0	Input31	Input30	Input2	29	Input28	
	0	Parity bits	0	Input27	Input26	Input2	25	Input24	
	0	Parity bits	0	Input23	Input22	Input2	21	Input20	
	0	Parity bits	0	Input19	Input18	Input1	7	Input16	
	0	Parity bits	0	Input15	Input14	Input1	3	Input12	
	0	Parity bits	0	Input11	Input10	Input	9	Input8	
	0	Parity bits	0	Input7	Input6	Input	5	Input4	
	0	Parity bits	0	Input3	Input2	Input	1	Input 0	

分類器がSignal eventであると予測したとき、その予測が正しいのは98%

全てのSignal eventの80%を検出

分類器がSignal eventであると予測したとき、その予測が正しいのは98%

全てのBG eventの20%を誤ってSignal eventであると分類