J-PARC muon g-2/EDM実験: クロック分配ボードの開発

岡崎 佑太 (KEK 素核研)

計測システム研究会2022

2022.11.18

ミューオン異常磁気能率(g-2)@FNAL

- 2021年4月、FNALの最初の結果が発表された
 - BNLの結果と無矛盾な結果
 - FNAL+BNLの測定と理論のズレは4.2σ
- 最終的にはBNLの20倍のデータを貯める

BNLから移設した蓄積リング(FNAL)

J-PARC muon g-2/EDM 実験

- BNL、FNALとは異なる手法で測定を行う
 - TDRの要約論文 (M.Abe et al., PTEP 2019(2019)053C02)

電子陽電子飛跡検出器

- ミューオンの崩壊で生じる陽電子の崩壊時刻、運動量などを 測定するためにシリコンストリップ検出器を用いる
- 最大6個/nsでミューオンが崩壊する → 高レート耐性が必要
 - 190 µmのピッチを持つセンサー
 - 高速応答 (立ち上がり時間 < 50 ns) なASIC
 - 5 nsのサンプリングレート

- シリコンストリップセンサーが貼られた "ベーン"を40枚配置
- 最小のモジュール単位は
 "クォーターベーン" (ベーンの1/4に相当)

DAQシステムの概要

クロック分配に関する制約

- 基準クロックの高い周波数安定性 (Δf/f << 5 × 10-9)
 - 物理からの制約 (0.1 ppmでのmuon g-2測定)
 ΔT/T_{g-2} << Δω/ω = 0.1 ppm
 →ΔT << 0.1 ppm × (2 µs) = 2×10⁻¹³ s
 - ・測定時間 = 40 µs
 - → 相対的な不定性: 2×10⁻¹³ s/4×10⁻⁵ s << 5×10⁻⁹
- 十分小さいクロックジッタ:30 ps (σ)
 - 明確な数字ではないが、ベンチマークとして用いる
- FRBS基板上にSFPケージをたくさん配置できない
 - トリガーとクロックを別のパスで送ることはできない

ここに電源、データ読み出 し、クロック・トリガー信 号の3つのケーブルを通す (φ 60 mm) nonm

クロック・トリガーの分配方法

検出器側の制約からクロックとデータ(トリガー信号)を1つのパスで送る

• Clock Duty Cycle Modulation (data-on-clock 方式)

クロックの立ち上がりは固定、立ち下がりのタイミングを変化させてduty比を変化させる duty比がデータに対応するため、そこにトリガー信号を埋め込む ここは固定

データを変換する : 例えば 2'b01 -> 10b'1111000000

- RXは受け取ったデータを
 PLLなどに入れてduty 50%
 のクロックに戻せばTX側と
 位相が同期した基準クロッ
 クが手に入る
- データは基準クロックから 作った高速クロックを用い て変換すれば良い

Timing control board

クロック・トリガー分配システム

周波数安定性測定(ボード)

- 100 MHzはTimepodの入力周波数の範囲外なので、10
 MHzのクロックでSi5394の周波数安定性を測定する
- Si5394はPLLを内部に1つ持っており、Loop
 Bandwidthの設定を変化させて測定を行う

周波数安定性測定(ボード)

Allan Deviation $\sigma_V(T)$

周波数安定性測定(ボード)

Phase Noise £(f) in dBc/Hz

Setup

Allan Deviation $\sigma_{v}(T)$

Phase Noise £(f) in dBc/Hz

Phase Noise £(f) in dBc/Hz

Allan Deviation $\sigma_{v}(T)$

Phase Noise £(f) in dBc/Hz

フロックジッター測定

クロックジッター測定

Total jitter (1E-12) : 46.0 ps

Total jitter (1E-12) : 55.1 ps

~ 30 min程度しか測定していないが、エラーなし

Loop Bandwidth : 4 kHz

位相ジッター測定

Loop Bandwidth : 4 kHz

位相差の再現性

ジッタークリーナー(SlaveのSi5394)のキャリブレーションごとに

位相ジッターの中心値の変化を測定

(MasterやAMNEQのリセットはなし)

Mean of delay (from Master to Slave)	Std Dev of delay (from Master to Slave)	
2.2021 ns	7.9 ps	
2.2038 ns	8.1 ps	
2.2047 ns	8.0 ps	
2.2083 ns	8.0 ps	
2.2012 ns	8.1 ps	

Loop Bandwidth : 4 kHz

データ送信時に各1Mサンプル

サンプル数が少ないが、 <10 psでは再現性がある

位相差の温度依存性

位相差のLoop bandwidth依存性

位相差が周期的に動いている

output clock : 10 MHz

Loop bandwidth	位相差 (Std dev)	
4 kHz	8.2 ps	
100 Hz	25.0 ps	

MasterとSlaveの位相差が周期的に動いていると、 2つのSlave間でのクロックの位相差に相関が出たり、 Reset毎にその相関が変化したりする可能性がある

位相差のLoop bandwidth依存性試験

セットアップ

評価ボードの出力ピン間の相関

Loop BandWidth (EVB) : 4 kHz

Reset sampling of oscilloscope (~50k sample)

Mean of delay (from out2 to out0)	Std Dev of delay (from out2 to out0)	Mean of delay (from out2 to out0)	Std Dev of delay (from out2 to out0)
7.5845 ns	1.8 ps	2.4436 ns	1.7 ps
7.5843 ns	1.8 ps	2.4437 ns	1.7 ps
7.5844 ns	1.8 ps	2.4437 ns	1.8 ps
7.5842 ns	1.8 ps	2.4438 ns	1.7 ps
7.5843 ns	1.8 ps	2.4437 ns	1.7 ps

評価ボードのoutput同士で見ると、Std Devは1.8 ps程度

評価ボードの出力ピン間の相関

Re-calibration (~50k sample)

Loop Bandwidth (TCB) : 4 kHz

Mean of delay (from EVB to TCB1)	Std Dev of delay (from EVB to TCB1)	Mean of delay (from EVB to TCB2)	Std Dev of delay (from EVB to TCB2)	Mean of delay (from TCB1 to TCB2)	Std Dev of delay (from TCB1 to TCB2)
3.7092 ns	5.9 ps	6.2621 ns	6.0 ps	9.9713 ns	6.0 ps
3.7104 ns	5.8 ps	6.2625 ns	5.9 ps	9.9728 ns	5.9 ps
3.7099 ns	6.1 ps	6.2609 ns	6.1 ps	9.9709 ns	6.0 ps
3.7101 ns	5.7 ps	6.2617 ns	5.9 ps	9.9726 ns	5.9 ps
3.7119 ns	6.0 ps	6.2607 ns	6.1 ps	9.9726 ns	6.0 ps

Re-calibration (~50k sample)

Loop Bandwidth (TCB) : 80 Hz

Mean of delay (from EVB to TCB1)	Std Dev of delay (from EVB to TCB1)	Mean of delay (from EVB to TCB2)	Std Dev of delay (from EVB to TCB2)	Mean of delay (from TCB1 to TCB2)	Std Dev of delay (from TCB1 to TCB2)
1.3690 ns	14.1 ps	6.2589 ns	16.5 ps	7.6279 ns	19.4 ps (20.3)
1.3701 ns	13.3 ps	6.2573 ns	17.8 ps	7.6274 ns	20.8 ps (20.5)
1.3691 ns	13.5 ps	6.2591 ns	19.0 ps	7.6282 ns	23.1 ps (21.2)
1.3690 ns	15.6 ps	6.2566 ns	14.3 ps	7.6256 ns	19.4 ps (19.8)
1.3690 ns	13.1 ps	6.2569 ns	17.1 ps	7.6259 ns	22.2 ps (20.2)

Loop Bandwidthが80 Hzの方がMaster-Slave間のStd devが大きく、resetのたびに

Std devの変化も大きいので、Loop Bandwidthは大きい値の方が良さそう

- J-PARC muon g-2/EDM実験はBNL、FNALと異なる手法での測定を行う
- クロックとトリガーの分配はdata-on-clock方式 (CDCM)
- DAQシステムのクロックに関する制約は厳しい
 - ・ 周波数安定性: Δf/f << 5 × 10⁻⁹

 ← FT-001Sを使うことでクリア
 - クロックジッタ: 30 ps (σ)
 - TIE測定: 3.7 ps (idle)、4.5 ps (data)
 - Delay測定 : 7.2 ps (idle) 、 7.9 ps (data)
 - Resetによるふらつき : < 10 ps
- システムに用いる回路の開発は順調に進んでいる
 - Timing Control Board: 製作済み
 - AMANEQ:製作済み
 - FRBS: 試作機を製作済み

- Si5394のLoop Bandwidthは 4 kHzに設定 Back up