大強度パルスミュオン対応の高速応答検出器の開発

2023/11/20 西村 昇一郎| KEK IMSS/J-PARCセンター

Detectors for Muon Physics

Muon decay positrons have information

- Muon spin direction
- Decay point
- Muon life-time

It is important to count the number of positrons accurately

2

a=1/3

a=1

ミュオン基礎物理実験

ミュオントラップ実験

目的|ミュオン基礎物理定数の精密測定

q/m (~1ppb)

- muon magnetic moment (~1ppb)
- muon life (~1ppm)

116 592 061(41)×10⁻¹¹ 0.35 ppm

Table 1: Summary of Mea	sured Muon F	Properties and Selected Decay I	Rates and Limits
Property	Symbol	Value	Precision
Mass	m_{μ}	$105.6583715(35)~{ m MeV}$	34 ppb
Mean Lifetime	$ au_{\mu}$	$2.1969811(22) \times 10^{-6}$ s	1.0 ppm
Anom. Mag. Moment	a_{μ}	$\frac{116592091(63) \times 10^{-11}}{110}$	0.54 ppm
Elec. Dipole Moment	d_{μ}	$< 1.9 \times 10^{-19} e \cdot \mathrm{cm}$	95% C.L.

B. Abi *et al.*, Phys. Rev. Lett. **126**, 141801 (2021)

2023/11/20

第一目標|Muonをtrapする装置開発、実証試験

Muon trapを実現させるポイント

▶ 短寿命のミュオンをトラップして振動周波数を測定(困難)

▶ 大強度超低速ミュオンビームが必要

J-PARC MUSEの大強度ミュオンビームで初めて実現

実験セットアップ

5 西村 昇一郎 / KEK IMSS | 計測システム研究会

実験セットアップ

6 西村 昇一郎 / KEK IMSS | 計測システム研究会

崩壞陽電子検出

Simulation条件

- 磁場|2.9 T
- 初期スピン方向 |
 水平方向
 (下向きに回転開始)
- 検出器配置 | 鉛直方向に
 35 mm離れた場所に設置

Larmor回転

- 135.53 MHz/T ×2.9 T = 393.037 MHz
- 周期|2.55 ns

7

2023/11/20

Experiments with New Detector in the Future

Next-generation µSR

- High TF measurement (~5 T)
- + with USM & $\pi/2$ pulse
- Tracking decay positron
- Spin echo
- Precise measurement of slow relaxation
- µSR under extreme magnetic field (~20 T)
- LCR measurement
- Extreme counting rate
- Surface muon beam can penetrate 100 µm sensor
- Stroboscopic measurement with more statistics
- Precise measurement of transient phenomenon

2023/11/20

µSR Spectrometers at J-PARC

9 西村 昇一郎 / KEK IMSS | 計測システム研究会

現在のイベント消失の様子

10 西村 昇一郎 / KEK IMSS | 計測システム研究会

パイルアップに対する対応策

検出器の微細化

速い応答

最新の半導体検出器

新しい検出器候補1

Low Gain Avalanche Detector (LGAD)

- Signal gained in the sensor
- Large signal
- * Thin sensor
- ✤ Simple readout electronics
- Fast response
- Standard silicon LGAD

	Signal width	Time resolution
n	\sim 100 ns	\sim a few ns
	\sim 1 ns	~ 30 ps

- Example | LHC ATLAS HGTD ^{高輝度LHCアップグレード}
- High Gain Timing Detector
- ◆ 1.3 mm sq. 300 µmt
- Hybrid sensor

ATLAS group

12 西村 昇一郎 / KEK IMSS | 計測システム研究会

SiGe BiCMOS Monolithic sensor

- SiGe Heterojunction Bipolar Transistors
- Integrated fast readout circuit
- Fast response
- Developed by Univ. of Geneva

Example

- FASER experiment (LHC)
- ★ 7.5×15 mm² prototype was created

Hexagonal pixel sensor with 65 µm on a side

G. Iacobucci et. al., JINST 17 P02019 (2022)

13 西村 昇一郎 / KEK IMSS | 計測システム研究会

Summary Table

	SiPM + Plastic Scintillator (Current)	Standard Silicon Detetor	AC-LGAD	SiGe Monolithic BiCMOS
Granularity	1,000 µm × fiber length (50,000 µm)	~ 50 µm	~ 50 µm	less than 50 µm is possible
Thickness	> 1000 µm	180 µm	less than 180µm maybe possible	less than 180µm maybe possible
Signal time width	40-100 ns	\sim 100 ns	~ 2 ns	a few ns
Time resolution	a few ns	a few ns	~30 ps	~100 ps

Pile-up rate can be improved by at least a factor of 10,000

2023/11/20

AC-LGAD Beam Test at S1

S1ビーム試験(2023/06/14)

- 大強度パルスミュオンビームでの応答確認
- 現行シンチより近い位置でpile-up event lossがほぼない時間スペクトルを測定

測定条件

- ダブルパルス
- ビームスリットFull Open
- ◆ µSRカウンターのイベントレート 686Mevt/h (7.6evt/pulse/ch)

2023/11/20

- ◆ 現行のカウンターだと超絶歪み
- ★ そもそもDAQもまともに動かない

実験セットアップ

16 西村 昇一郎 / KEK IMSS | 計測システム研究会

検出器試験の様子

17 西村 昇一郎 / KEK IMSS | 計測システム研究会

検出器セットアップ

18 西村 昇一郎 / KEK IMSS | 計測システム研究会

AC-LGADセンサー部分

19 西村 昇一郎 / KEK IMSS | 計測システム研究会

Waveform of Positron Signal

Waveform Analysis

Pulse-synchronized noise (~1 GHz, ~30 mV)

21 西村 昇一郎 / KEK IMSS | 計測システム研究会

Time Spectra (AC-LGAD)

22 西村 昇一郎 / KEK IMSS | 計測システム研究会

レートに関する考察(直下流)

- ミュオン崩壊陽電子の平均カウント数
- 45 count/pulse
- AC-LGAD立体角
- S1分光器の約2倍 (より過酷)

	S1 spectrometer	AC-LGAD
Segment Size	120 mm ²	1 mm²
Distance from Sample	< 160 mm	~1mm

2023/11/20

- S1分光器はCoincidenceを取って12 count/pulse
- ◆ S1分光器はテレスコープでサンプル以外からの陽電子をほぼ見ない
- ◆ 時間スペクトルはかなり歪む
- 45 count/pulse時の冒頭のパイルアップ確率
- 2 ns pulse width | 0.08% (10Gイベントでみえるかも?)
 - 40 ns pulse width | 19.8% (S1分光器)

ピクセルタイプのAC-LGADでさらに高レート耐性向上も期待

究極の高レート耐性

ミュオンflux @ H-line

• $1.6 \times 10^8 \ \mu^+/s = 5.6 \times 10^6 \ \mu^+/pulse$ (25Hz beam, 1 MW Operation)

2023/11/20

- 磁場収束でほぼ全陽電子をカウント
- ◆ あるいは試料にほぼ密着状態の場合
- スピン偏極で上流2/3、下流1/3の割合
- (究極)磁場16 Tで崩壊陽電子の軌道直径22 mm
- ◆ 上流では *ϕ* 44 mm領域に 3.7 × 10⁶ *e*⁺/pulse が飛来
- 分布が一様だと仮定すると
- ◆ 1mm角シンチ 2,400 hit/pulse
- ◆ 100µm角pixel 24 hit/pulse
- ★ 最大11 MHz
- ★ 検出器pulse width 2 nsでパイルアップ確率 0.02% 5 ns 0.15% 40 ns 12.5 %
- データ転送は25Hzで可能

TDCのみ(TOTは欲しい)

信号処理 + TDC の開発で 協力求む

2023/11/20

取得時間

• $30 + \alpha \, \mu s$ (16 bit)

その他の要求は設計次第(検討中)

Summary & Prospects

大強度ミュオンビーム対応高速検出器の候補

- AC-LGAD
- SiGe

AC-LGAD(1 mm角)のS1ビームテスト

- 現在の普段の分光器より(かなり)過酷な環境で測定
- 時間スペクトルに歪みなし
- 細分化でより高レート耐性向上も期待

今後の目標

実験に使うAC-LGADセンサーデザイン(ピクセルタイプ)

2023/11/20

● 読み出し回路の開発