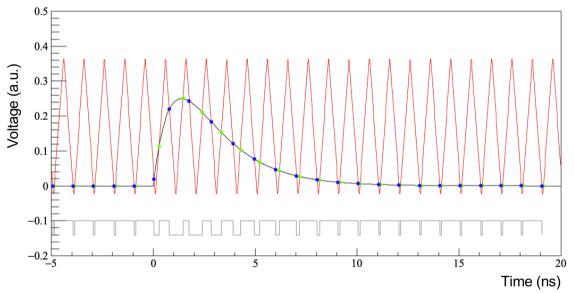
数値シミュレーションを用いた Slope ADC の到達性能の研究

大阪大学 核物理研究センター 小林 信之


コンテンツ

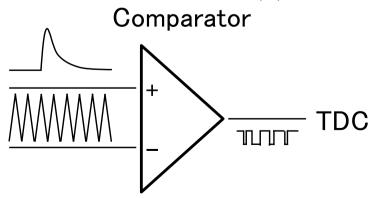
- * Slope ADC?
- *背景、動機
- * Slope ADC の開発
- *数値シミュレーションプログラム
- *検討項目
- *議論

Slope ADC?

振動する Slope を用いて信号をスキャン Slope を跨いだ時間を記録 (TDC)

→ 波形の再構成、電荷と時刻情報を得る

赤: Slope


黒:信号

青、緑点: Slopeを跨いだ時間

黒: ロジック出力

必要なもの

- * Slope 信号
- * Comparator
- * TDC

振動するスレッショルド電圧をかけてTDC情報を得る

Slope ADC?

長所

- コストが下がる可能性がある
- ・開発コストの面でも有利、TDCとして本多さんのAMANEQなど使える
- ・ストリーミングTDCで読み出せばストリーミングDAQへの対応も可能
- ゲートを使った電荷積分型のQDCのような遅延ケーブル要らず

短所

- 非等間隔でサンプリングされたデータ→ 処理がFADCより複雑
 - (等間隔のデータに変換、そのまま非等間隔で扱う)
- ADCの分解能は良くない

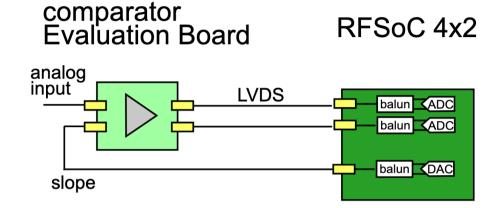
背景、動機

- ・需要調査から大まかに2つの需要がありそれぞれ異なる実装が必要であることが分かった。
 - 需要1 遅いFADCを使って通常の読出し(波形をなまらせる)
 - BGO、GAGGなどの無機シンチレーター(表の水色)
 - 需要2 速いサンプリングでTOT、Slope ADC
 - RPC、プラスチックシンチレーター(表の緑色)
- HRTDCが単価(昔5k/ch)低下するならTOTでなんとかした方がよいだろう。マルチthreshold化等の検証が必要。スロープADCも要検証

Slope ADC の評価・検討をRCNPデータ収集基盤室で行う

- → まずは原理検証、シミュレーションからスタート
- * Comparator 評価ボードと RFSoC を用いた原理検証 (高橋さん、味村さん)
- * 数値シミュレーション (その他の人、SPADI-A WG1 TF)

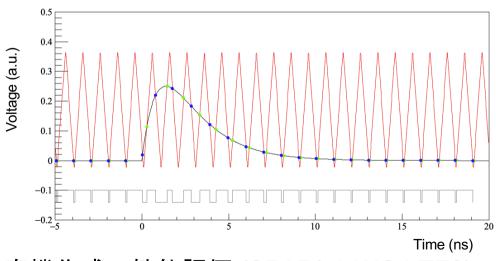
需要調査


想定される需要

各参加者が想定している**信号についての調査**をおこなった。調査内容としては想定される入力信号の時定数、波高及びQDCとしての要求性能について調べた。要求性能については主に時間分解能、エネルギー分解能について調査した。それぞれの調査結果を以下にまとめる。

検出器	時定数	波高	時間分解能	エネルギー分解能	備考
BGO	~ 300ns	~ 100mV	~ 300ps	< 1%	カロリメーター用
PWO	~ 30ns	~ 1V	~ 300ps	< 1%	カロリメーター用
鉛+シンチ	~ 10s	~ 100mV	~ 300ps	~ few %	サンプリングカロリ メーター
CsI(Tl)	~ 1us	~ 100mV	~ 10ns	~ 1%	時間分解能は余り気 にしない
CsI(pure)	~ 100ns	~ 100mV	~ 10ns	~ 1%	時間分解能は余り気 にしない
GAGG	~ few 10ns	~ 100mV	no request	no request	
LySO	~ 50ns	unknown	no request	no request	
NaI	long	unknown	no request	no request	
プラスチックシンチ レーター	~ 10ns	~ 1V	< 100ps	QTCで代用可能	
PPAC	30 ~ 40ns	$40\sim 50 mV$	no request	~ few %	*1
鉛ガラス	< few 10ns	~ 1V	no request	no request	*2
RPC	~ 10ns	~ mV order	important < 100 ps?	slewing correction	
中性子検出器(LEPS)	~ 10ns	~ 100mV			シンチレーター (L=2m)
中性子検出器(E80)	~ 10ns	~ 100mV			LEPSとほぼ同じ (L=3m)

開発項目


Comparator 評価ボード & RFSoC を用いた原理検証 (高橋さん、味村さん)

- RFSoC 4x2があるので遊んでみる試してみる
 - DAC: slope作成
 - ADC: comparator outのLVDS(デジタル信号)を入力
- LVDS信号波形を解析してTDCの代わりにする
 - お手軽(?)な高分解能の時間計測
- FPGA-TDCの性能(実装)とは独立なstudyが可能
- コンパレータの種類, slopeの周波数, slopeの形, single-ended/differential などを変えて測定

高橋さんスライドより借用

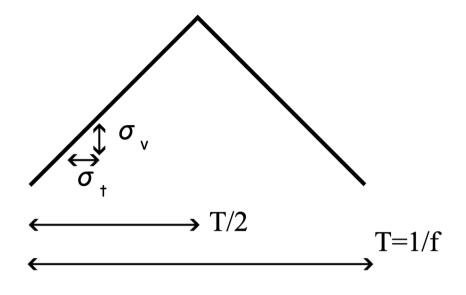
数値シミュレーション (その他の人、SPADI-A WG1 TF)

性能見積もり (C++ で作成、ROOTで表示)

→ 実機作成、性能評価 (SPADI-A WG1 TF?)

性能の見積り

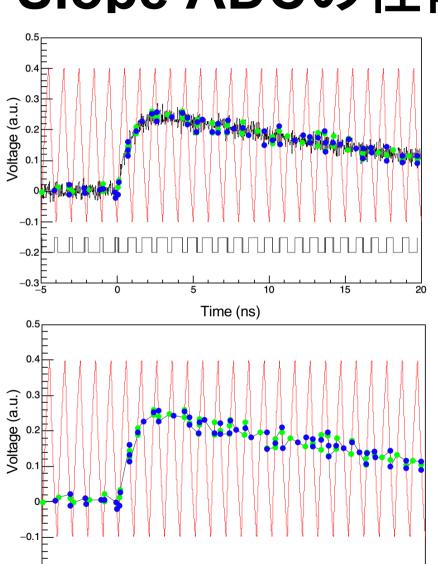
- TDCの時間分解能 = σ_t
- slopeの周波数 = *f*
 - \circ 周期 = $T = \frac{1}{f}$
- (理想的な場合の)ADC分解能 = N bits


$$\circ$$
 $rac{T}{2}=rac{1}{2f}=2^N\cdot\sigma_t$

$$\circ \frac{\sigma_V}{\sigma_t} \sim \frac{dV}{dt}$$

例:
$$\sigma_t$$
 = 10 ps, f = 500 MHz (= 1 Gsps) $\Rightarrow rac{T}{2\sigma_t}$ = 100 $\Rightarrow N$ = 6.6

実際にはもっと悪くなる

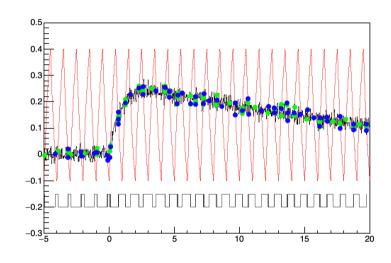

- コンパレータの性能 (ジッタ、ノイズ、...)
- slopeの形, 安定性, ...

高橋さんSPADI-A Monthly meeting スライドより

なにが性能に効くのかよくわからない 波形処理のアルゴリズムも検討が必要 → シミュレーション

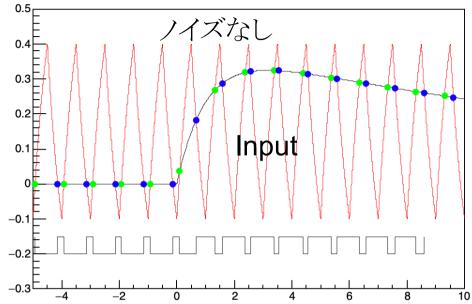
数値シミュレーションによる Slope ADCの性能評価

Time (ns)

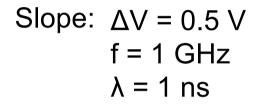

- * 信号+ノイズ生成 (ΔV)
- * Slope 生成
- * 比較器で比較
- * 比較器出力を 時間分解能、ジッターで鈍らせる (σ_t)
- → TDC 情報出力

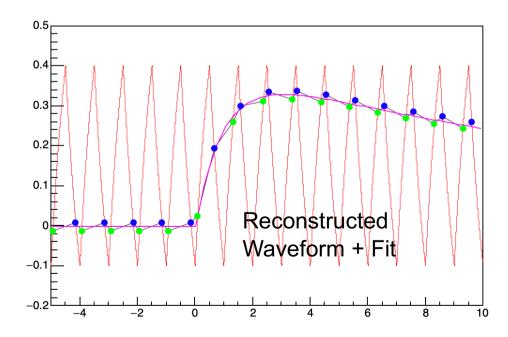
TDC情報から

- * 仮定するSlopeを生成
- *波形を再構成
- * なんらかのアルゴリズムで時刻、電荷情報を計算

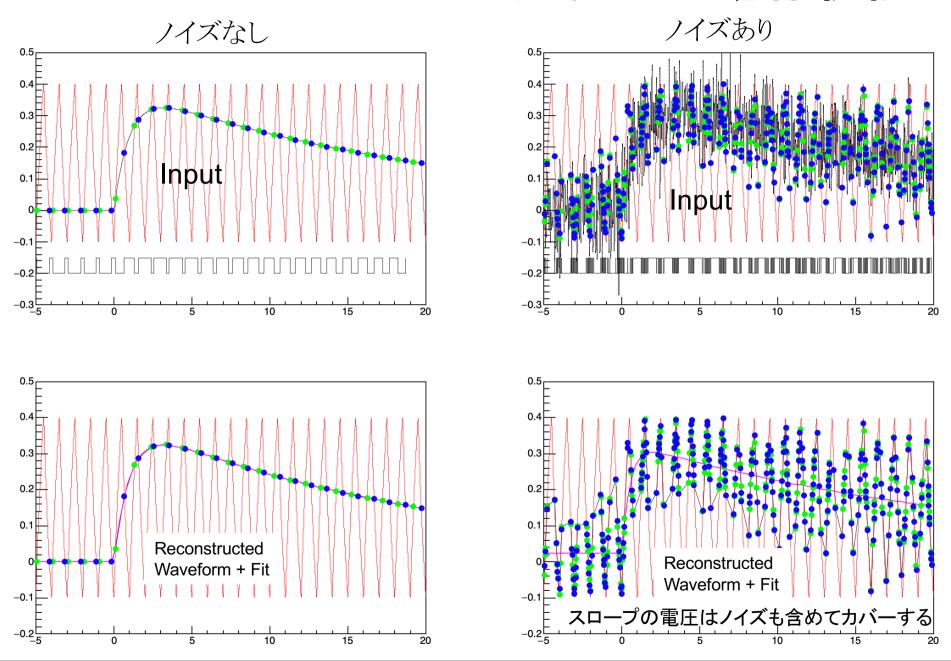

評価したい項目

- *ノイズの大きさ、TDCの分解能 vs. 電荷分解能
- * 電荷の線形性(vs. ノイズの大きさ)
- * 実際のSlope と想定する Slope の違い vs. 電荷分解能
- * 遅い波形 vs. 電荷分解能
- * 時刻、電荷情報決定のアルゴリズム (台形フィルター etc.)
- *スルー補正の方法
- * 適用範囲 (遅い波形にも適用可能か?)
- * 周波数とSlopeの最適化
 - -- 周波数が大きいと、ADC分解能が悪くなる。
 - 一方、サンプリング数は増える。
 - → いいところはある?
 - -- 三角波の代わりに指数関数、Sinカーブ?




10

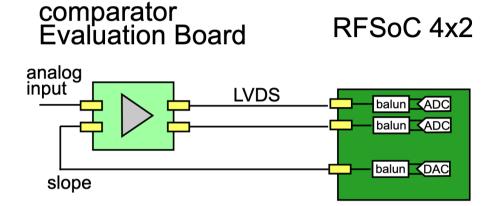
シミュレーションプログラムの動作検証


Signal:
$$A(-e^{-t/\tau_1} + e^{-t/\tau_2})$$

 $\tau_1 = 1 \text{ ns}, \tau_2 = 20 \text{ ns}, A = 0.4$

仮定するSlope を 10 ps シフト
→ ジグザグパターン
Fit すると電荷で 1 % の違い

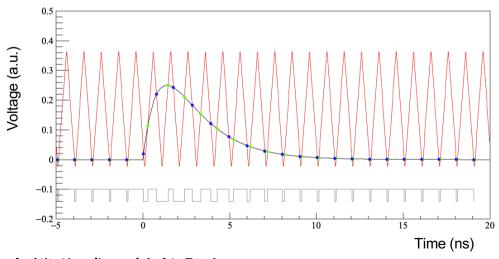
シミュレーションプログラムの動作検証



今後

- * ノイズの与え方改善 --- ホワイトノイズ、周期的ノイズ (sinカーブ)
- * 時刻、電荷決定アルゴリズムの実装 非等間隔のサンプリングでちょっと面倒
- *スル一補正
- *他の人も使えるように

まとめ


Comparator 評価ボード & RFSoC を用いた原理検証 (高橋さん、味村さん)

- RFSoC 4x2があるので遊んでみる試してみる
 - DAC: slope作成
 - ADC: comparator outのLVDS(デジタル信号)を入力
- LVDS信号波形を解析してTDCの代わりにする
 - お手軽(?)な高分解能の時間計測
- FPGA-TDCの性能(実装)とは独立なstudyが可能
- コンパレータの種類, slopeの周波数, slopeの形, single-ended/differential などを変えて測定

高橋さんスライドより借用

数値シミュレーション (その他の人、SPADI-A WG1 TF)

→ 実機作成、性能評価 (SPADI-A WG1 TF?)

性能見積もり (C++ で作成、ROOTで表示) ベースはできた

SPADI-A WG1: 数値シミュレーションによる Slope ADC の性能評価TF 申し込みフォーム

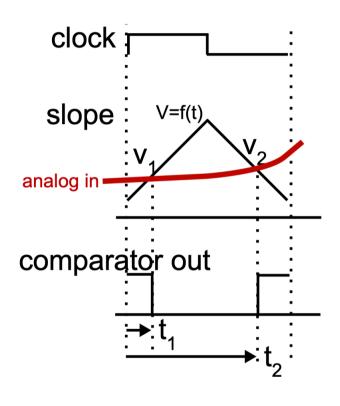
https://forms.gle/Bwb4adCQ2qGFjqTY7

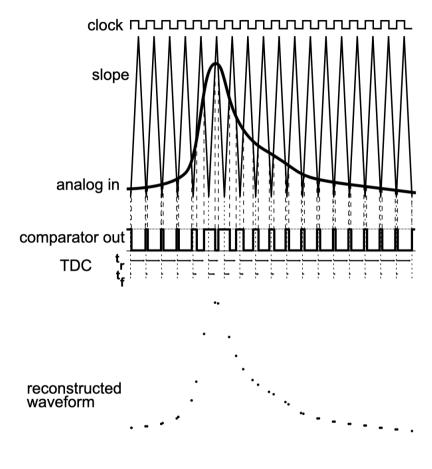
コラボレータ

大阪大学 核物理研究センター

高橋智則、味村周平、柳善永、大田晋輔

KEK IPNS


本多良太郎、五十嵐洋一


Backup

Slope ADC (2):時間測定 ▶ 波形再構成

thresholdのslope信号は周期的

▶ 各サイクルでthresholdと交差した時刻 (= 位相)を測れば波高がわかる

4/10

高橋さんSPADI-A Monthly meeting スライドより

参考文献

* J. Wu et al., "Improving single slope ADC and an example implemented in FPGA with 16.7 GHz equivalent counter clock frequency" https://doi.org/10.1109/NSSMIC.2011.6154442

* H. Homulle et al.,"A Cryogenic 1 GSa/s, Soft-Core FPGA ADC for Quantum Computing Applications,"

https://doi.org/10.1109/TCSI.2016.2599927

* A. Nishimura et al., "Observational demonstration of a low-cost fast Fourier transform spectrometer with a delay-line-based ramp-compare ADC implemented on FPGA,"

https://doi.org/10.1093/pasj/psab030

* L. Leuenberger et al., "An FPGA-based -ENOB MSample/s ADC without any External Components,"

https://doi.org/10.1145/3431920.3439287

高橋さんスライドより