

大阪大学大学院 理学研究科 物理学専攻 M2 石谷 壮史

共同実験者

Collaborators :

<u>S.Ishitani^{B,J}</u>, K. Kojima^{A,I}, M. Mihara^{B,I}, A. Sato^B, G. Takayama^B, K. Yasuda^B, T.Sugisaki^B, Y. Kimura^{B,I}, R.Taguchi^B, M. Fukutome^B, S. Shimizu^B, R. Imai^B, S. Ide^B, K.Shimizu^C, M. Kamon^C, M. Fukushima^C, Y. Mizoi^D, K.Horie^B, A. Koda^E, S. Kanda^E,

- W. Sato^E, D. Nishimura^G, M. Tanaka^{F,I},
- G. Morris^A, B. Hitti^A, D. Arseneau^A,

R. Abasalti^A, D. Vyas^A, R. Yasuda^H, M. Fukuda^B

Affiliation :

^ACMMS, TRIUMF, ^BDept. Phys., Osaka U., ^CKYOKUGEN, Osaka U., ^DOECU, ^EKEK, ^FKanazawa U., ^GKyushu U., ^HTokyo City Univ., ^ITokyo Noko Univ., ^JOpen-it

Acknowledgement :

- Multidisciplinary PhD Program for Pioneering Quantum Beam Application (PQBA) at Osaka University.
- Scholarship of Graduate School of Science of Osaka University for Overseas Research Activities.
- Fundamental Electronics Research Institute (FERI), Osaka Electro-Communication University (OECU).
- JSPS Kakenhi Grant Number JP22H00110. KEK-TRIUMF Exchange Program for Early Career Researchers (EPECR)

µSR法とは

<u>Muon Spin Rotation/Relaxation/Resonance</u> = スピン偏極したミュオンビームを利用した分光法

ミュオンスピンイメージング

<u>何ができるようになるか?</u>

✔ バックグラウンドの除去

- ・微小試料の µSR測定
- 複数/混合試料の同時測定
- 非破壊分析
- 大強度 µSR
- e.g.) Diamond Anvil Cell → 超高圧µSR 試料サイズ(<1mm) << ビームサイズ

実験施設 - TRIUMF in Vancouver, Canada ₩

測定セットアップ

Side view

Top view

Trig.(T_{start}) : μ+ counter T_{Stop} : e⁺ counter (Forward/Backward, Up/Down) µ⁺ : Drift Chamber
e⁺ : Plastic Fiber

ドリフトチェンバー:μ⁺ のトラッキング

<u>DC760 (ハヤシレピック)</u>

✓ CH /Layer: 10ch *X,Y each 3-layers
 ✓ ワイヤーピッチ: 2mm
 ✓ 有感領域: 38 x 38 x 60mmt
 ✓ ガス: He: CO₂ = 90: 10
 ✓ 印加電圧: -1450V

Drift Chamber

電子のドリフト時間 → 入射位置 高い位置分解能 ~ 数百um

µ+のトラッキングから試料の位置を特定

DAQ:ドリフトチェンバー

✔ 検出器入力信号64chを処理可能

✔ アナログ波形取り込み

: 解像度 10bit, サンプリング周波数 31.25MHz

- ✓ TDC (FPGA内に実装): 解像度 1ns
- ✓ リングバッファ:8us
- √ データ転送モード

Raw:波形, Suppress: ADCSum, TOT, TDC time

- Test pulse input で全てのCHに同じ波形を生成可能
- Clock: 40MHz on board or 外部入力
- マルチトリガ連続15トリガまで受付可能

プラスチックファイバー:e⁺ のトラッキング

DAQ:プラスチックファイバー, e⁺ counter

KALLIOPE, NIM-TDC

MPPC CN Board V1 基板(GN-2408-1)

NIM-TDC

データ収集システム

DAQ Synchronization

Common Clock がない → Triggerの時間差のパターンでマッチング

KALLIOPE :

擬似トリガの識別が不可能 = Common Clock がない

→ Synchronization をソフトで頑張る必要あり

- Analog out を見ることができず不便 → EASIROC を通して使う?
- S/Nが悪い → データ量が多い上にほとんどがノイズ
 → FWを書き換えて65us以降のデータを取らないようにする?

<u>RP1212 :</u>

• Suppress mode(データ可変長) でパケットロスすることがあった → パケットロスを無視してデータ取得するようにする

何かアドバイスあれば是非お願いします。

<u>μSRスペクトルが異なる3つの試料のイメージング</u>

- CeF₃ : ZF, Room Temperature で F-µ-F 回転
- Al w/hole : µ+の回転、穴が空いた部分では何も見えないはず
- Al₂O₃: Al Magnetic moment で µ⁺ spin は緩和する

- Vertex Matching → 高い画像分解能

詳細な解析はこれから

